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Ī S̄

Objective  To investigate the human body’s complex system, and classify and characterize the
human  body’s  health  states  with “a  comprehensive  integrated  method  from  qualitative  to
quantitative”.
Methods   This paper introduces the concept of “order parameters” and proposes a method
for establishing an order parameter model of gas discharge visualization (GDV) based on the
principle of “mastering both permanence and change (MBPC)”. The method involved the fol-
lowing three steps. First, average luminous intensity ( ) and average area ( ) of the GDV im-
ages were calculated to construct the phase space, and the score of the health questionnaire
was calculated as the health deviation index (H).  Second,  the k-means++ clustering method
was  employed  to  identify  subclasses  with  the  same  health  characteristics  based  on  the  data
samples,  and  to  statistically  determine  the  symptom-specific  frequencies  of  the  subclasses.
Third,  the distance (d) between each sample and the “ideal  health state”,  which determined
in  the  phase  space  of  each  subclass,  was  calculated  as  an  order  parameter  describing  the
health  imbalance,  and  a  linear  mapping  was  established  between  the d and  the H.  Further,
the health implications of GDV signals were explored by analyzing subclass symptom profiles.
We also compare the mean square error (MSE) with classification methods based on age, gen-
der, and body mass index (BMI) indices to verify that the phase space possesses the ability to
portray the health status of the human body.
Results   This study preliminarily tested the reliability of the order parameter model on data
samples provided by 20 participants.  Based on the discovered linear law,  the current model
can use d calculated by measuring the GDV signal to predict H (R2 > 0.77). Combined with the
symptom  profiles  of  the  subclasses,  we  explain  the  classification  basis  of  the  phase  space
based on the pattern identification. Compared with common classification methods based on
age, gender, BMI, etc., the MSE of phase space-based classification was reduced by an order
of magnitude.
Conclusion  In this study, the GDV order parameter model based on MBPC can identify sub-
classes and characterize individual health levels, and explore the TCM health meanings of the
GDV signals by using subjective-objective methods, which holds significance for establishing
mathematical models from TCM diagnosis principles to interpret human body signals.
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1 Introduction

Mastering  both  permanence  and  change  (MBPC)  is  a
fundamental  principle  in  traditional  Chinese  medicine
(TCM) diagnosis,  encapsulating the concept  of  Yin-Yang
balance [1]. MBPC aims to detect abnormal changes in ex-
cess  or  deficiency  by  recognizing  the  quasi-equilibrium
state  of  the  human  body [1, 2],  thus  measuring  deviations
from  an  optimal  health  status.  In  this  study,  we  aim  to
represent  this  diagnostic  process  mathematically:  given
the complexity of the system, it is essential to first catego-
rize the objects involved and subsequently perform a lo-
cal  linearization  of  the  quasi-equilibrium  point  within
each  subclass.  This  approach  enables  a  quantitative  as-
sessment of how each object deviates from its respective
quasi-equilibrium point.

From  a  fundamental  perspective,  human  health  rep-
resents  a  multi-scale  equilibrium  state  characterized  by
complexity  and  dynamics.  Western  natural  science  ap-
proaches the human body through a mechanical view of
life,  employing  reductionist  method  to  study  the  human
body’s complex system. This leads to its research focus on
fragmentary  descriptions  of  phenomena  of  the  human
body,  lacking  a  comprehensive  theoretical  model  of  the
human body system [3]. Such limitations make it challeng-
ing to discern the holistic and nuanced patterns underly-
ing these phenomena.  This  significantly  limits  the appli-
cation of western scientific findings in personalized clini-
cal diagnosis and treatment.

Therefore,  it  is  crucial  to  identify  parameters  reflect-
ing  the  circulation  of  Qi-blood  from  human  signals,  en-
abling  the  establishment  of  a  model  that  describes  both
the  balanced  and  deviant  states  of  the  human  body  sys-
tem. MBPC offers  a  universal  framework for  interpreting
physiological signals indicative of Qi-blood movement [4].
Currently, objective research on TCM diagnosis predomi-
nantly  focuses  on  developing  information-based  tools
that  simulate  the  sensory  skills  of  TCM  practitioners  —
such as sight, touch, and smell — to align with four TCM
diagnostic  methods:  inspection,  auscultation  and  olfac-
tion, inquiry, and palpation [5]. Advances in human signal
measurement  devices  now  allow  for  the  sized  collection
of  diverse  physiological  signals,  underscoring  the  urgent
need  for  a  quantitative  characterization  of  the  Qi-blood
movement  patterns  reflected  by  human  body  signals
based on TCMD principles.

The gas discharge visualization (GDV) technique is an
emerging  quantum  measurement  technique  that  cap-
tures the human body’s glow by acquiring Kirlian images
of  fingers,  enabling  quick  and  convenient  assessment  of
health  status [6, 7].  Widely  applied  in  complementary  and
alternative  medicine,  traditional  practices,  psychophysi-
ology,  and  consciousness  research,  the  GDV  technique
aids in evaluating the effects of health management tech-
niques [8].  Studies  examining  the  correlations  between

GDV measurements and factors like heart rate variability,
systolic and diastolic blood pressure, and stress level [9-11]

suggest  that  GDV  can  measure  autonomic  nervous  re-
sponses [12], making it valuable for assessing the impact of
meditation  on  physical  and  mental  health [13].  For  in-
stance, BHAT et al. [14] found a relationship between GDV
image parameters and fasting blood glucose, which could
support  early  diabetes  diagnosis  and  treatment  evalua-
tion.  Correlations  between  GDV  image  parameters  and
corresponding  disease  evaluation  indicators  have  also
been observed for conditions like hypertension and colon
tumors [15-17].  Moreover,  researchers  have  found  that  hu-
man  body’s  glow  changes  dynamically  with  internal  hu-
man body Qi-blood movement characteristics and its res-
onance  with  the  external  environment.  For  example,
meditation, yoga, exercise, or different types of tea can all
affect  the  human  body  glow [18-20].  This  kind  of  research
that  explores  the  correlations  between  parameters  and
changes  in  human  physiological  state  provides  indica-
tors  that  describe  phenomena.  However,  these  indica-
tors  lack clear  physiological  definitions in  relation to  the
body’s  condition,  making  it  challenging  to  elucidate  the
mechanism of Qi-blood movement underlying the corre-
lations between indicators and phenomena.

Two main challenges arise in exploring the patterns of
Qi-blood  circulation  in  the  human  body  as  reflected  in
GDV signals. For one thing, the fluctuation range of GDV
signal  parameters  is  often  larger  than  the  variations  in-
duced by changes in health conditions. For another, rely-
ing on descriptive statistical approaches limits our under-
standing of human GDV signals, making it difficult to ex-
tract  meaningful  health-related  information  from  the
highly complex GDV signal system.

We  propose  that  GDV  technology  should  transition
from observational research to establishing interpretable
mathematical  modeling  research.  Given  the  numerous
factors influencing health and the considerable variabili-
ty  among  individuals,  it  is  essential  to  adopt  a  compre-
hensive integrated approach from qualitative to quantita-
tive in human studies. Professor SHE Zhensu, building on
QIAN  Xuesen’s  concepts  in  human  science,  proposed  a
human body model of “one element, two sides, multi-di-
mensional  and  multi-level” [21].  This  model  underscores
the  presence  of  multi-dimensional  and  multi-level  Yin-
Yang  balances  and  self-organization  centers  in  the  hu-
man body system.  We hold the belief  that  any signal  ca-
pable  of  reflecting  alterations  in  Qi-blood  and  Yin-Yang
dynamics can be extracted from the principles of TCM di-
agnosis, rooted in Yin-Yang balance. By extracting appro-
priate  parameters,  we  can  establish  mathematical  mod-
els  that  define  a  quasi-equilibrium  state  and  interpret
physiological  meaning  based  on  the  physical  principles
underlying the measurement signals.

This  study  aims  to  extract  parameters  from  GDV  sig-
nals  that  reflect  variations  in  Qi-blood.  Grounded  in  the
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MBPC TCM framework, it seeks to develop a mathemati-
cal model for classifying and quantifying complex health
quasi-equilibrium  states.  Furthermore,  the  physiological
significance  of  the  measured  signals  will  be  elucidated
based on their underlying physical principles. 

2 Data and methods

This  paper  presents  a  method  that  combines  subjective
and  objective  measurements,  drawing  on  the “order  pa-
rameter” model. The theory of human body order param-
eters  is  applied  to  classify  and  quantify  complex  quasi-
equilibrium health states [22, 23], providing a mathematical
expression  of  the  basic  principle  of  MBPC.  This  method
preliminarily  constructs  a  quantitative  relationship  be-
tween GDV image signal parameters and the health devi-
ation index, aiming to describe the health quasi-equilibri-
um state and its deviations.

Ī S̄

R2

Specifically, the method proceeds in three steps. First,
we  determined  the  key  parameters  of  the  GDV  image’s
average luminous intensity ( ) and average area ( ) to re-
flect  the  Qi-blood  and  Yin-Yang  dynamics  by  analyzing
the  correlation  between  GDV  image  parameters  and
health  questionnaire  results.  Phase  space  is  constructed
to distribute sample data points. Second, we automatical-
ly  clustered data samples  within phase space.  According
to  the  elbow  method  of  fitting  degree  ( ),  we  identified
three clusters, representing three different types of health
status,  termed  as “subclasses”.  Finally,  according  to
health  questionnaire  results,  each  subclass  is  associated
with  an  ideal  health  state,  characterized  by  high  order
and  minimal  questionnaire  symptoms.  From  this,  we
measured the deviation degree (d) between each sample
and  the  ideal  health  state.  A  greater d indicates  a  lower
system orderliness  of  the human body.  Showing a  linear
relationship  between  them, d is  termed  as  the  order  pa-
rameter.  Based  on  a  linear  relationship  between d and
the  health  deviation  index  (H),  we  described  human
health status by measuring the GDV signal. 

2.1 Participants

In this study, under informed consent, participants with-
out clinical diseases diagnosed by western medicine were
recruited  from  the  Peking  University  campus  and  com-
munity.  Data collection took place from March 1 to June
20,  2021.  The  inclusion  and  exclusion  criteria  are  as  fol-
lows. 

2.1.1 Inclusion criteria　(i) Age between 17 and 90 years,
any  gender.  (ii)  Absence  of  significant  somatic  diseases,
abnormal  indicators,  and  history  of  mental  disorders.
(iii) Signed informed consent form. 

2.1.2 Exclusion  criteria　 (i)  Individuals  with  cardiac
pacemakers. (ii) Individuals with artificial implants, such

as  neurostimulators,  insulin  pumps,  electronic  cochlear
implants,  or  other  implanted  charged  devices.  (iii)  Indi-
viduals unable to maintain physical stability during mea-
surement due to mental or physical reasons. (iv) Individ-
uals with a history of acute diseases or trauma within two
weeks prior to the experiment. 

2.2 GDV measurement

Using  the  GDV  measuring  equipment  at  the  ENN  Insti-
tute of Life Science and Technology, we acquired ten-fin-
ger signals based on the following principles [8]. When an
object  is  placed  in  an  electromagnetic  field  and  subject-
ed to a strong electric pulse, it emits excited photons and
electrons,  a  process termed “photon-electron radiation”.
The light produced is recorded by a camera with a sensi-
tive charge-coupled device (CCD), which converts the ra-
diation  into  a  color  computer  image  or  bio-image.  This
process  represents  the  basic  physical  principle  of  GDV
imaging (Figure 1).

  
Gas discharge area

Transparent glass

Transparent conductive layer

CCD lmage
acquisition Data analysis

USB

High voltage pulse
generation module

Control
circuit

Operator
 
Figure  1   GDV  hardware  principle  function  block  dia-
gram [24]

 

It  is  important  to  note  that  if  the  subject  accidentally
touches  the  grounded metal  or  conductive  surfaces  dur-
ing  GDV  measurement,  they  may  experience  a  strong
electric  shock  sensation.  To  ensure  accuracy,  the  finger
and  the  screen  should  be  cleaned  before  each  measure-
ment  to  prevent  contaminating  the  screen  from  impuri-
ties  and affecting the measurement results.  Additionally,
maintaining  a  consistent  hand  position  across  multiple
measurements is recommended to improve reliability. 

2.3 Health questionnaire

The  health  questionnaire  used  in  this  study  is  based  on
TCM  diagnosis  syndrome  element  theory [25].  It  is  de-
signed  to  gather  information  on  common  symptoms  of
non-health manifestations of  the human body and mea-
sure  the  health  level  of  participants.  The  questionnaire
includes  105  questions,  each  rated  on  a  5-point  scale:
0  represents “rarely”,  1 “occasionally”,  2 “sometimes”,
3 “often”, and 4 “almost always”. Participants were asked
to answer each question according to their real feelings in
recent months. Scores were then totaled to calculate each
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participant’s H

H =
∑N

1 xi

S
(1)

xi N

N = 105, S = 420

Where  is the actual score of each question,  is the
number of questions in the questionnaire, and S is the full
score of the questionnaire. Here, .

H = 0

H , 0
H [0,1]

From the perspective of the MBPC principle, all symp-
toms  are  manifestations  of  a  deviation  from  the  quasi-
equilibrium state [26].  In an ideal  health state,  the human
body reaches the highest system orderliness, showing no
symptoms  on  a  macroscopic  level,  with .  When
there is a deviation from this ideal state, the system order-
liness  of  the  human  body  decreases.  It  shows  symptoms
macroscopically, .  According  to  Equation  (1),  the
value range of the  is . It is an order parameter re-
flecting the system orderliness of the human health state. 

2.4 Building GDV order parameter model

Drawing  on  Landau’s  concept  of  the  order  parameter,
this  paper  proposes  a  GDV  order  parameter  model.  The
order parameter serves as a measure of the system order-
liness. Given the multi-dimensional and multi-level com-
plexity  of  the  human  body,  it  is  difficult  to  describe  its
health  state  with  simple  linear  laws.  However,  by  divid-
ing it into multiple subclasses, we can uncover linear pat-
terns  by  refining  order  parameters  within  each  subclass.
The  core  value  of  the  order  parameter,  therefore,  lies  in
enabling quantitative processing within a qualitative clas-
sification framework. In this study, we used the health de-
viation  index  as  an  order  parameter  to  measure  the  sys-
tem orderliness of health state. When a GDV parameter is
found to exhibit a simple linear relationship with this in-
dex,  this  parameter  can  likely  be  identified  as  an  order
parameter.

Ī S̄

We defined characteristic distance in two-dimension-
al phase space composed of key health parameters (aver-
age luminous intensity ( ) and average area ( ), see Sup-
plementary material for parameter definition)

d =
√(

S̄ i− S̄ best

)2
+
(
Īi− Ībest

)2 (2)

(S̄ best, Ībest)

d
H

Where  is  the  position  of  the “ideal  health
state” of  this  subclass  in phase space.  Assume that  there
is  a  linear  relationship  between  deviation  degree  and
health deviation index , which is

H = k ∗d+b (3)

S̄ i = S̄ best Īi = ĪbestWhen , , there is

b = Hbest (4)

That  is, b is  the  best  health  deviation  index  corre-
sponding  to  the  ideal  health  center.  Substitute  Equation
(4) into Equation (3) to get

k =
Hi−Hbest

d
=
∆Hi

d
(5)

∆Hi

d
Where  is the change value of the health deviation

index relative to the best health deviation index.  repre-
sents  the  deviation  of  the  sample  point  from  the  ideal
health  center.  The  ratio  demonstrates  the  sensitivity  of
health  state  changes  to  variations  in  characteristic  dis-
tance  within  this  subclass.  A  smaller  |k|  indicates  a  less
sensitive  response  of  the  health  state  to  deviations  in
GDV degree, whereas a larger |k| implies a higher level of
sensitivity.

(S̄ best, Ībest)
k Hmax

f (di)
Hi

We  used  Pytorch  to  establish  a  linear  model  and  de-
termine the ideal  health center  and model  pa-
rameters  and . After defining model parameters, we
choose mean square error (MSE) as the loss function, and
make mean square error between model predicted health
deviation index  and actual measured health devia-
tion index  minimum(

S̄ best, Ībest,k,Hmax

)
= argmin

m∑
i=1

( f (di)−Hi)
2 (6)

Where m is the number of samples in this subclass. 

2.5 Determining subclasses with the same health charac-
teristics

Ī S̄

R2

It  is  evident  that  data  exhibit  convexity  in  the  phase
space,  following  the  principle  of  MBPC.  In  the  phase
space constructed by key health parameters (average lu-
minous intensity  ( )  and average area ( ),  we employed
the  classic  k-means++  method  to  cluster  the  data  with
normalization performed before clustering.  Using the el-
bow method based on fitting degree ( ), we classified all
data accordingly. 

2.6 Analysis the symptom spectrum of subclasses

To  investigate  the  health  characteristics  of  distinct  sub-
classes,  we  conducted  a  statistical  analysis  of  the  symp-
tom  frequency  from  the  health  questionnaire.  By  calcu-
lating  the  specific  symptoms  (according  to  the  nor-
malised  frequency  of  occurrence  of  a  symptom  in  the
samples in the subclass, greater than 0.8 being a high fre-
quency  symptom,  less  than  0.5  being  a  low-frequency
symptom)  that  emerged  within  each  subclass,  we  were
able to delineate and discuss the underlying characteris-
tics  of  Qi-blood  movement.  This  analysis  was  grounded
in the physical meaning of the two GDV parameters. 

2.7 Comparison with traditional classification methods

We contend that the classification of the order parameter
model,  grounded  in  the  phase  space  analysis,  captures
the  core  commonality  of  the  population.  Consequently,
when  employing  this  model  to  forecast  health  deviation
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degrees,  it  exhibits  superior  cohesion  within  subclasses,
outperforming other conventional classification methods
such as gender, age, and body mass index (BMI). This ad-
vantage  can  be  quantitatively  reflected  through  specific
error indicators. In this study, we selected two error indi-
cators:  MSE and mean relative  error  (MRE) (see Supple-
mentary  material).  We  calculated  the  model  fitting  error
for each subclass.

MSE =
1
m

m∑
i=1

(
Hi− Ĥi

)2
(7)

This error indicator is a more convenient means to quan-
tify  the “average  error”,  which  is  the  difference  between
the  health  index  estimate  and  the  true  value.  A  smaller
MSE  value  indicates  that  the  prediction  model  more  ac-
curately describes the experimental data. Similarly,

MRE =
100%

m

m∑
i=1

∣∣Hi− Ĥi

∣∣
H̄

(8)

is the ratio of the absolute error between the health index
estimate  and  true  value,  and  the  average  value  of  multi-
ple  measurements.  It  provides  a  clearer  perspective  on
the  order  of  magnitude  difference  of  absolute  errors  be-
tween model estimates and true values.

To validate this hypothesis, we classified data accord-
ing to gender, age, BMI, and three common human phys-
iological characteristics,  respectively.  We then compared
fitting results under different classification conditions. 

3 Results
 

3.1 Data collection

We collected data from 20 volunteers to build the model.
All participants' ten-finger GDV images and health ques-
tionnaire  responses  were  collected.  The  distribution  of
their  gender,  BMI,  and  age  are  shown  in Table  1.  To  re-
duce  measurement  error,  each  participant  completed
three  consecutive  measurements.  GDV  parameters  were
calculated for results of three measurements respectively
for the same measurer, and the averages were taken as fi-
nal GDV signal parameters for the measurer. 

3.2 General linear law of subclass division based on phase
space

Typical  GDV  measurement  images  for  each  subclass  are
shown in Figure 2A − 2C. We designated blue dots as full
class  (n =  5),  red  dots  as  moderate  class  (n =  8),  and
brown  dots  as  lacking  class  (n =  7)  based  on  the  visual
characteristics of the subclasses.

Moreover,  we  observed  a  strong  linear  relationship
between d and H after determining the ideal health cen-
ter  of  three  subclasses. Figure  2D − 2F show  that  the
health  deviation  index  rises  with  the  increase  of d for
three subclasses. Table 2 presents the fitting results of the

 

Table 1   Physiological characteristics of data samples

Characteristic Category Sample size

Gender
Male 8

Female 12

BMI

< 18.5 5

18.5 – 24 8

> 24 7

Age

18 – 20 6

20 – 24 9

> 24 5
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Figure  2   Subclass  division  and  model  parameter  opti-
mization of data samples in phase space

S̄ Ī

S̄
Ī

S̄ Ī

A – C, typical  GDV measurement images (left  hand) represent-
ing  three  subclasses,  corresponding  to  bright  and  full  type,
moderate type, and dark and sparse type, respectively. The cir-
cles in the figure represent actual data samples, and the straight
line  represents  the  fitting  result  of  the  model.  D – F,  fitting  re-
sults of full class (n = 5), moderate class (n = 8), and lacking class
(n = 7) models, respectively. G, the distribution of subclasses in

 −  phase  space  and  the  position  of  ideal  points,  where  the
black  solid  line  indicates  the  parameter  average  value  of  all
samples.  Analyzing  the  parameter  characteristics  of  distribu-
tion, blue dots correspond to the subclass with the largest  and

,  manifesting  as  bright  and  full  halos  in  the  GDV  images;
brown dots represent the subclass with smaller  and , reflect-
ed as dark and missing halos in the GDV images; while red dots,
falling between the two, are reflected in the GDV images as in-
termediate  in  brightness  and  fullness.  H,  the  distribution  posi-
tion of ideal points in phase space having a linear relationship.
The circles in the figure represent the actual data samples, and
the pentagrams are the ideal health centers given by the model.

 

Table  2   Model  fitting  parameter  results  obtained  from
GDV order parameter space classification

Subclass Size k b R2

Full class 5 0.15 − 0.027 0.77

Moderate class 8 0.36 − 0.077 0.96

Lacking class 7 0.17 − 0.050 0.90
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model, with an R2 value of 0.77 for the full class and both
other subclasses having R2 values greater than 0.9.

S̄ Ī

R2

Significantly, Figure  2G illustrates  the  distribution  of
20  samples  in  phase  space,  which  constructed  from  two
key  parameters  extracted  from  and .  Utilizing  the
common  elbow  method,  the  dataset  of  20  samples  was
optimally  clustered  into  three  subclasses,  corresponds
exactly to the apparent visual differences observed in the
typical GDV images of the subclasses. Figure 2H depicts a
reliable linear relationship between ideal health points of
three subclasses ( = 0.98).

These findings provide robust evidence that there is a
general  linear  law  between  health  status  and d within  a
subclass, and d serves as a key order parameter revealing
this evolution law. 

3.3 Explaining  the  physiological  meaning  of  GDV  signal
through subclass symptom spectrum

We observed that the distributions of the symptom spec-
tra  of  different  subclasses  exhibit  distinct  differences.
Figure 3 shows the distribution of the symptom spectrum
of  each  category,  clearly  highlighting  that  the  high-fre-
quency  (F >  0.8)  symptoms  of  the  full  class  are  mainly
“spontaneous sweating”.

The  horizontal  axis  represents  the  specific  symptom
spectrum that distinguishes the three subclasses. The ver-
tical  axis  denotes  different  subclasses.  The  numbers  in
the  grid  mark  the  frequency  of  a  certain  symptom  in  a
certain  subclass;  darker  shades  signify  higher  frequen-
cies.  The symptom spectrum includes all  symptoms that
have a frequency higher than 0.7 in at least one class and
a  standard  deviation  greater  than  0.15  among  the  three
classes.  The  symptoms  are  sorted  from  left  to  right  ac-
cording to the frequency of the lacking class.

Table 3 demonstrates the different specific symptoms
of subclasses. For the moderate class, the high-frequency
symptoms  are “vexation” and “decreased  attention
span”,  whereas  the lacking class  exhibits  high-frequency
symptoms such as “fear and anxiety” and “insomnia and
excessive dreaming”. Each subclass had specific high-fre-
quency symptoms and was highly differentiated.

 

Table 3   Mean health deviation index and specific symp-
toms for each subclass

Subclass H̄
Specific symptom

High-frequency
(F > 0.8)

Low-frequency
(F < 0.5)

Full class 0.068 Spontaneous
sweating

Fear and anxiety
insomnia excessive
dreaming vexation
decreased
attention span

Moderate
class

0.101 Vexation decreased
attention span

Spontaneous
sweating acute
rhinitis

Lacking
class

0.097 Fear and anxiety
insomnia excessive
dreaming

−*

−* means there were no such symptoms.
 

3.4 Comparison  of  phase  space  order  parameter  model
with general classification methods

The artificial  subclass division according to different  hu-
man physiological characteristics and the fitting results of
the  model  are  presented  in Table  4.  Apart  from  gender,
age and BMI were both categorized into three classes, en-
suring a comparable number of samples in each subclass.

 
 

Table 4   Classification according to gender, age, and BMI
and model fitting parameter results obtained

Characteristic Category Size R2 MSE MRE

Gender
Female 12 0.14 395.96 0.049

Male 8 0.00 126.80 0.031

Age

18 − 20 6 0.00 216.51 0.048

20 − 24 9 0.52 72.74 0.020

> 24 5 0.00 238.71 0.060

BMI

< 18.5 5 0.35 123.48 0.052

18.5 − 24 8 0.82 17.34 0.013

> 24 7 0.00 330.19 0.066

 

The  model  fitting  error  obtained  by  the  phase  space
classification method was lower than that obtained by us-
ing common human physiological characteristics to clas-
sify  the  population. Figure  4A presents  comparison  of
MSE  of  model  fitting  under  four  classification  methods.
The fitting result MSE using phase space for classification
was only 17.8, which is much lower than other classifica-
tion methods. The result indicates that, in contrast to us-
ing  traditional  human  characteristics  (BMI,  gender,  and
age) for  population classification,  classifying the popula-
tion  through  order  parameter  phase  space  captures  the
core health state system orderliness of the subclass popu-
lation.

To ascertain whether varying the number of classifica-
tions  impacts  the  accuracy  of  the  model,  we  varied  the
number of subclasses for testing. Figure 4B illustrates the
trend  of  MSE  of  model  fitting  results  as  the  cluster

 

Full
class

Moderate
class

Lacking
class

Fear &
anxiety

Insomnia &
excessive
dreaming

Decreased
attention

span

Vexation Acute
rhinitis

Spontaneous
sweating

F
1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.4 0.4 0.4 0.2 0.6 0.8

0.71 0.57 0.86 0.86 0.29 0.43

1 0.88 0.75 0.75 0.75 0.62

 
Figure  3   Symptom  spectrum  distribution  of  each  sub-
class
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number k is  adjusted  within  the  range  of  1  to  5  under
three classification methods:  phase space,  age,  and BMI.
Across various classification numbers,  the fitting error of
the  phase  space  classification  method  remained  signifi-
cantly lower than that of age and BMI in these two classi-
fication methods. Additionally, we observed that increas-
ing the number of classified data did not lead to a better-
fitting result for the model. We noted that as the number
of classes increased from 3 to 4, the average relative error
increased.  This  finding  underscores  the  inherent  struc-
tural  characteristics  within  the  data,  which  serve  as  the
basis for the qualitative division of health state subclasses.
  

Phase space BMI Gender Age
0

50

100
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250

300A

17.8
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176.0
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M
SE

1 2 3 4 5
0
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200

300

400

500

600

700

Number of clusters

B
616.5

298.1
270.4

204.8 176.0

157.0
17.8

115.9

133.9

21.6
63.7

83.0
11.8

Phase space
Age
BMI

M
SE

 
Figure 4   Fitting error of model under different classifica-
tion methods and numbers of classes
A,  the  fitting  error  of  the  model  under  various  classification
methods and the number of classes. B, the influence of different
cluster numbers on the fitting error of the model. Different col-
ors are employed to distinguish between the classification indi-
cators (red represents phase space, dark gray indicates age, and
beige signifies BMI).
  

4 Discussion
 

4.1 The  significance  of  phase  space  diagram for  molecu-
lar classes

K = 4

Ideal  health  points  of  three  subclasses  were  linearly  dis-
tributed in phase space, suggesting the potential of phase
space  to  describe  the  evolution  of  different  population
health patterns. The phase space is an ordered space de-
picting the evolution among different subclasses, provid-
ing  a  basis  for  our  inference  that  the  health  mode  alter-
ations of each subclass follow a regular pattern. From this
inference,  a  more  valuable  thing  is  that  constructing
phase  space  can  divide  the  population  into  subclasses
based  on  the  first  principle,  offering  significant  support
for  artificial  intelligence-assisted  medical  treatment.  In
our  research,  we  also  found  that  when  the  cluster  num-
ber  was  set  as ,  the  sample  point  in  the  lower  left
corner  of  the  dark  missing  subclass  was  separated  into
one  class  alone.  Consequently,  this  observation  leads  us
to speculate that another subclass exists in the lower left
corner  of  the  phase  space  (Figure  2).  This  hypothetical
subclass  is  characterized  by  a  very  dark  halo  with  many
gaps. This requires further verification through the collec-
tion of additional data.

In contrast to traditional machine learning approach-
es  that  rely  on labeled data,  the  physical  meaning of  the
GDV  signal  corresponding  to  subclass  division  in  phase

space is clear, facilitating iterative engagement with clini-
cal experiments and a deeper understanding of the health
implications  reflected  by  signal.  The  linear  law  expres-
sion  varies  within  different  subclasses,  indicating  that
each  subclass  corresponds  to  several  stable  states  com-
monly experienced by individuals, aligning with the idea
of  the  TCM  diagnosis  principle.  This  will  be  explored  in
greater depth in section 4.2. 

4.2 Physiological characteristics of GDV physical param-
eters

Among  the  three  subclasses,  the  average  value  of  the
health  deviation  index  increases  in  sequence.  We  can
preliminarily conclude that the “full class” represents the
optimal health state. Combining the physical principle of
GDV imaging (as outlined in the method section) and the
principle of Yin-Yang balance in TCM diagnosis, we offer
the  following  interpretation  of  the  physiological  charac-
teristics associated with GDV parameter variations.

Conjecture from the perspective of physics, when the
overall system orderliness of the human body is high, the
overall  conductivity  is  also high,  resulting in strong pho-
toelectric radiation at the fingertip; conversely,  when the
system  orderliness  of  the  human  body  decreases,  the
overall conductivity lowers, leading to weaker photoelec-
tric radiation at the fingertip.

S̄

S̄
S̄

S̄

Therefore,  we  can  surmise  that  the  halo  image’s 
represents  the  contact  angle  and  area  between  fingertip
tissue  and  the  halo  panel,  which  indicates  the  Qi-blood
filling  degree  on  the  human  body  surface.  Under  con-
stant  voltage,  the  distance  from  fingertip  discharge  to
break  through  the  air  to  reach  conductive  film  is  deter-
mined,  while  a  person  in  optimal  health  should  exhibit
well-developed  and  resilient  fingertip  tissue  and  of  its
halo image should be within a moderate range. If  is too
small, it suggests that fingertip tissue is too dry and lacks
elasticity or is too tight. From the perspective of TCM di-
agnosis theory, it  corresponds to the human body Qi be-
ing  too  inwardly  convergent,  indicating  a  Yang-deficient
type.  If  is  too  large,  it  indicates  that  fingertip  tissue  is
too loose and lacks wrapping force. It corresponds to the
human body Qi being too outwardly divergent, character-
istic of a Yin-deficient type.

S̄ Ī

Ī

Ī

Under  the  same condition of ,  average brightness 
of the halo is related to human body conductivity, which
in  turn  depends  on  the  smoothness  of  Qi-blood.  A  per-
son  in  better  health  should  exhibit  stable  and  moderate
skin  electricity  at  the  fingertip.  The  average  brightness 
of its halo should be within a moderate range. If the aver-
age  brightness  is  too  small,  it  indicates  that  the  skin’s
electric property at the fingertip is not very active. It  cor-
responds to the inactive operation of Qi on the body sur-
face.  From  the  perspective  of  TCM  diagnosis  theory,  it
may  be  caused  by  Qi-blood  movement  obstruction
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Ī

brought  by  excess  pathogenic  Qi  or  insufficient  vital  Qi
leading  to  inwardly  convergent  Qi.  If  the  average  bright-
ness  is too high, it suggests that the skin’s electric prop-
erty at the fingertip is excessively active. It corresponds to
the significant operation of Qi on the body surface, which
may be due to excessive Yang Qi causing outwardly diver-
gent Qi.

From  these  insights,  we  can  qualitatively  determine
the  changing  patterns  of  Qi-blood  and  Yin-Yang  in  the
human body through the changes in  the key parameters
of  GDV,  thus  explaining  the  differences  between  the
symptom  profiles  of  the  three  subclasses.  For  example,
according  to  TCM  evidence  theory,  the  evidence  type  of
“full class” is inclined towards the "the exterior is not con-
solidated" pattern, indicative of insufficient energy astrin-
gency. Conversely, the evidence type of “lacking class” is
more aligned with the “phlegm obstructing the heart ves-
sels  pattern”,  reflecting  an  internal  blockage,  where  the
meridians do not flow smoothly.

Considering the consensus on the human health im-
plications of the classification results obtained from TCM
theory and phase space, the difference in symptom spec-
trum  reflects  the  phenomenon  that  samples  within  the
same  subclass  share  similar  human  body  function  char-
acteristics, whereas the differences of samples across dif-
ferent  classes  are  substantial.  This  suggests  that  our  ap-
proach of using an order parameter model to construct a
phase  space  and  then  classifying  the  population  in  the
phase space is advantageous for describing the self-orga-
nization of complex systems in the human body.

It  suggests  that  our  approach  of  using  an  order  pa-
rameter model to construct a phase space and then clas-
sifying  the  population  in  the  phase  space  is  advanta-
geous for describing the self-organization of complex sys-
tems in the human body. The method is characterized by
the  use  of  an  order  parameter  model  to  determine  the
ideal health points in the subclasses and to calculate the
deviation of the sample points relative to the ideal health
points,  thereby  quantitatively  describing  the  changes  in
health  states  and  thus  mathematically  expressing  the
TCM  diagnosis  principle.  In  future  work,  we  intend  to
collect more data and carry out more detailed correlation
research on a larger scale. 

4.3 Advantages  of  phase  space  order  parameter  model
compared with general classification methods

Figure  4 reveals  that  data  with  common  health  states  in
GDV  parameter  phase  space  exhibit  clustering,  indicat-
ing that clustering methods can be employed to differen-
tiate  between  these  subclasses.  Under  different  health
types,  the evolution law of  the health states  adheres  to  a
consistent  linear  law  as  characterized  by  the  deviation
degree,  which  is  represented  by  the  GDV  deviation
degree d.  This d serves  as  an  order  parameter  that

quantifies  the  system  orderliness  of  health  states  within
subclasses. The model based on the health deviation de-
gree  is  found  to  be  more  accurate  than  classification  re-
sults  derived  from  human  physiological  characteristics
such as age, gender, and BMI.

However, compared with the accuracy and universali-
ty of  the proposed model,  the greater significance of  this
study lies in the mathematical  resolution we propose for
the  TCM  diagnosis  and  treatment  idea  of “treatment
based  on  pattern  differentiation”.  This  approach  holds
two  significant  advantages  for  clinical  application.  First,
the scheme provides a modeling method for TCM practi-
tioners  to  combine  subjective  and  objective  information
in the process of “treatment based on pattern differentia-
tion”. This method takes into account the correlation be-
tween  physical  principles,  objective  parameters,  TCM
theories,  subjective  feelings,  and  other  information,
thereby  facilitating  patient  health  status  recognition  and
enhancing patient compliance.  Second, the scheme pro-
vides a diagnostic reference and basis for TCM practition-
ers, particularly for complex diseases and patients requir-
ing long-term treatment who may be challenging to diag-
nose accurately at the outset. The program enables TCM
practitioners  to  make  tailored  diagnoses  and  treatment
plans  by  subcategorizing  and  identifying  similar  cases
within  subcategories,  even  when  encountering  novel
health states.  This empowers practitioners to adapt their
diagnosis and treatment strategies according to the model. 

4.4 Limitations and prospects

This  study  does  have  some  limitations.  First,  the  sample
size of this study is relatively small and participants in this
study  are  primarily  college  students  with  similar  health
statuses,  which  makes  it  challenging  to  discern  the  sys-
tem  orderliness  of  health  states  within  subclasses.  Sec-
ond, the significant changes in system orderliness within
subclasses underscore the need for cross-validation tech-
niques  and  additional  external  validation  to  ensure  the
model’s  generalizability  when  applied  to  a  larger,  inde-
pendent  dataset.  Finally,  although  the  present  study  at-
tempts to correlate GDV parameters with health status by
aligning  with  TCM  theory,  the  underlying  biomolecular
dynamics mechanisms behind these correlations are not
fully elucidated and warrant further investigation using a
more comprehensive set of measures. Future studies will
include a larger and more diverse sample to validate the
model’s robustness. We aspire to collaborate with hospi-
tals  to  conduct  long-term  observations  of  patients  with
chronic  diseases  such  as  hypertension  to  incorporate
more  cases  as  well  as  longitudinal  data.  This  approach
will  not only enhance our in-depth understanding of the
changes  in  health  status  over  time  but  also  optimize  the
proposed  model  and  delve  deeper  into  the  biological
mechanisms and physical basis of GDV parameters. 
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5 Conclusion

We  propose  a  mathematical  model  for  analyzing  health
states,  grounded in the TCM diagnosis  principle and the
physical  principles  of  GDV  measurement.  This  model
presents  a  mathematical  interpretation  for  the  diagnosis
pattern  of  TCM  syndrome  differentiation  and  treatment.
In clinical  practice,  Chinese medicine practitioners cate-
gorize  patients  into  different  syndrome  types  based  on
symptoms and assess the severity of each syndrome type.
We  have  developed  a  GDV  serial  parameter  model  to
mathematically represent this process.

This  study  holds  significant  implications  for  health
state  analysis  based  on  GDV  signals.  Analysis  of  the
symptom  profiles  of  the  subclasses  revealed  that  GDV
signals  contain  highly  structured  features  reflecting  the
fluctuations  of  Qi-blood  in  the  human  body,  which  can
guide  the  development  of  visualization  techniques  for
timely  and  personalized  clinical  observation  of  the  Yin-
Yang balance.

This study provides insights into the feasibility of uti-
lizing order parameter method to mathematize the TCM
diagnosis  process,  under  the  guidance  of  complex  sys-
tem  research  methodology.  By  linking  the  physical  prin-
ciples  of  GDV  signals  to  the  fluctuations  of  Qi-blood  in
the human body, according to the Yin-Yang balance the-
ory,  we  have  elucidated  the  mechanism  behind  changes
in human health states.  We have grounds to believe that
the  physiological  signals  obtained  by  any  instrument  or
equipment (such as GDV) capable of measuring the fluc-
tuations of Qi-blood in the human body can manifest the
TCM diagnosis principle of the Yin-Yang balance. 
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基于知常达变原理的气体放电可视化（GDV）序参量模型

忻煜a, 张磊a, 赵前程a, 佘钰嵘a, b, 佘振苏a*, 宋舒娜a*
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b. 山东中医药大学中医学院, 山东 济南 250355, 中国

 

Ī

S̄

R2 > 0.77

【摘要】目的  采用“从定性到定量的综合集成法”来研究人体复杂系统，以实现对人体健康状态的定性分类

和定量刻画。方法   本文通过引入“序参量”的概念，提出了基于“知常达变”原理建立气体放电可视化

（GDV）图像信号的序参量模型的方法，分为三个步骤。首先，计算 GDV 图像的平均亮度（ ）和平均面

积（ ）构建相空间，并计算健康问卷的总得分作为健康偏差指数（H）；其次，采用 k-means++聚类方

法，根据数据样本确定具有相同健康特征的亚类，统计各个亚类的特异性症状频次。最后，在相空间中确定

每个亚类的“理想健康状态”，计算每个样本与其之间的距离（d）作为描述健康偏离度的序参量，建立 d 与

H 之间的线性映射。进一步的，通过分析亚类症状谱，探索 GDV 信号的健康含义。我们还与基于年龄、性

别和体质指数（BMI）的分类方法比较均方误差（MSE），来验证相空间具备刻画人体健康状态的能力。结

果  本研究初步在 20 名志愿者提供的数据样本中检验了序参量模型。基于发现的线性规律，当前模型可以通

过 GDV 图像信号计算得到的偏差（d）来预测健康偏差指数（H）（ ）。结合亚类的症状谱，我们

为相空间的分类依据提供了基于辨证论治的解释。与基于年龄、性别、BMI 等的常见分类方法相比，基于

相空间分类的 MSE 降低了一个数量级。结论  本研究基于“知常达变”原理的 GDV 图像信号序参量模型能够

准确地识别亚类并表征个体的健康水平，采用主客观结合的方法探索 GDV 信号的中医健康含义，对于从传

统中医诊断原理建立数学模型以解读人体信号具有重要意义。

【关键词】气体放电可视化；中医；序参量；数理模型；个性化健康评估
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