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ABSTRACT

A program has been developed that utilises machine learning methodologies for the classification of gas discharge
images of liquid solutions. The glow patterns of liquid solution droplets in an electromagnetic field were recorded
using the gas discharge visualization (GDV) method. The method utilises a mass-produced Bio-Well device, does not
require consumables, and acquires images in approximately one minute. In the developed algorithm, classifiers were
trained to demonstrate high accuracy in distinguishing various types of water, including tap-filtered water, distilled
water, water from three different springs, tea with sugar, and solutions with magnesium, salt, and shungite impurities.
The developed approach is employed in the research of water purification methods using electromagnetic fields.
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1. Introduction

The contemporary enhancement in computational capabilities facilitates the utilisation of mathematical models
across diverse disciplines, encompassing fluid analysis. Conventional techniques for fluid analysis, including mass
spectrometry, chromatography, spectrophotometry, photometry, polarography, and potentiometry, are employed in both
manual and automated modes with the assistance of machine learning methodologies [1-4]. These approaches
necessitate the execution of measurements and analysis in a laboratory setting, utilising specialised equipment. The
operation of such equipment necessitates a particular set of competencies and consumables, whilst the analytical
process itself is s time-consuming.

The behavior of water in the presence of magnetic fields has been a subject of scientific interest for a
considerable period. A significant challenge in this field pertains to the complexity of evaluating the impact of magnetic
fields on water. Fortunately, in the last few years, several studies have demonstrated the influence of weak and super-
weak constant and variable magnetic fields on aqueous systems that do not contain admixtures sensitive to magnetic
fields. In the latest review [5] presented conceptual ideas and demonstrated a wide range of practical applications in
medicine [6-7], agriculture [8-9], wastewater treatment [10], and human health parameters [11]. Therefore, a large
amount of experimental data has been collected, proving that weak and super-weak magnetic fields have reproducible
effects on water solutions. These effects are most prominent when static and variable magnetic fields are used
simultaneously. On the other hand, reliable data recently suggested that magnetic and electromagnetic fields could
significantly influence the properties of highly diluted aqueous solutions [12].
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The utilisation of machine learning (ML) methodologies within the domain of mass spectrometry (MS) has
been a subject of considerable research interest [1]. It is evident that MS is confronted with challenges at each stage of
the process, from the initial collection of data to its subsequent interpretation. To elaborate, the data complexity (for
example, the dimensionality of the feature space) poses significant challenges. Machine learning provides tools to
address these issues; however, further development is required in the areas of standardization and explain ability.
Furthermore, the study [2] dedicated to imaging mass spectrometry (IMS) discusses challenges in interpretability
(relating machine learning (ML) results to physicochemical patterns) and the high dimensionality of the feature space.

In order to address the challenges posed by data complexity, the employment of unsupervised machine
learning algorithms has become a prevalent approach. For instance, the review article [3] focuses on the use of
unsupervised ML methods for exploratory data analysis in imaging mass spectrometry (IMS). The text is organized
around three main directions: factorization, clustering, and manifold learning. Unsupervised methods are well-suited for
the analysis of IMS data due to the fact that IMS produces large and complex datasets containing spatial and spectral
information.

The employment of screening instruments such as online UV-Vis spectrophotometers facilitates real-time
monitoring of drinking water quality. However, these instruments necessitate configuration and calibration, and their
maintenance requires expertise in spectroscopy [4]. The article observes that elevated turbidity or organic content
necessitates regular recalibration (due to the distortion of spectra caused by high turbidity or concentrations of organic
matter).

The utilization of gas discharge visualization (GDV) methodologies [13] has been demonstrated to facilitate
the circumvention of the aforementioned issues. For instance, the analysis time is approximately one minute, and no
special laboratory conditions or consumables are required. The output of GDV analysis is an image, and the complexity
of the data is dependent on the specific task and the processing methods employed [13-15].

Machine learning has also been employed in the domain of gas discharge visualization, with numerous studies
attaining substantial outcomes.

In study [16], a mathematical model of GDV parameters was developed. This model utilised glow intensity
and average area of the GDV images as features, and a health deviation index as the target label, with this index being
based on questionnaires. The k-means algorithm was utilised to categorise the 20 subjects into distinct subclasses.
Subsequently, the distances between each sample and an “ideal health state” (defined in a phase space) were calculated.
A linear relationship was established between the distance and the health deviation index.

In the study [17], a GDV method was developed for the analysis of biological objects in the liquid phase. The
method was primarily focused on the diagnosis of thyroid diseases, with the magnesium concentration in oral fluid
being measured as a key indicator. Utilising the proposed mathematical model, the authors established a correlation
between GDV streamer characteristics and the physicochemical properties of the fluid and voltage parameters. The
streamer characteristics were determined using classical computer vision. The dataset under consideration consisted of
60 objects. The feasibility of detecting salt ions such as NaCl, MgSO4, KCI, CaCl2, FeSO4, or their complexes in a
single liquid-phase biological object (LPBO) was demonstrated.

In the study [18], features extracted from GDV images were employed to train an SVM (Support Vector
Machine) machine learning model. The total number of objects involved in the study was 85.

A number of studies [19-20] have explored the possibility of disease classification using machine learning
algorithms based on features extracted from GDV. The target labels were extracted from ultrasound diagnostic reports.
The dataset under consideration consisted of approximately 170 objects.

Article [21] posits a methodology for the identification of diseases through the utilisation of GDV. Following
an initial series of preprocessing steps that utilise classical computer vision techniques, a segmentation approach is then
employed that is based on color intensity. This segmentation process is utilised for the purpose of identifying regions of
high energy. Subsequently, feature extraction is conducted utilising Particle Swarm Optimization (PSO), followed by
disease classification employing Bayesian Gaussian Mixture Models (BGMMs), which are models based on bivariate
Gaussian mixture models.

2. Analysis of gdv images for classification of liquid solutions

A considerable challenge faced by researchers and practitioners working with data is the limited number of class
instances in datasets. In the specific case of image-related tasks, such constraints can have a substantial detrimental
effect on the training process of machine learning models. A viable approach to address this issue is the application of
classical machine learning methods. In this context, it is important to note that object features can be extracted using
traditional engineering techniques such as classical computer vision. The efficacy of these methods is twofold: firstly,
they enhance the quality of feature extraction, and secondly, they improve the human interpretability of model results.
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The acquisition and analysis of GDV images is facilitated by the utilisation of the standard Bio-Well Element
device. A volume of the test liquid, predetermined by the operator, is then applied to the device's electrode. The subject
is exposed to an electromagnetic field, which results in the emission of a glow that is then captured by the GDV camera.
The resulting image is illustrated in Figure 1.

Figure 1. Example of a GDV image of a water droplet

The images in the GDV manifest as “petals” surrounding the droplet (petal in Figure 1). The configuration of
these particles, including their shape, number, and positioning, is contingent upon the nature of the liquid under
analysis. Given the observed similarity in shape between the GDV images, it is rational to employ computer vision
methodologies for their analysis. The resulting image can thus be represented as an intensity matrix, where the number
of rows and columns corresponds to the height and width of the image, respectively. The matrix in question is denoted
by A (1), and its number of rows and columns are designated as n and m, respectively:

a1 Ao Aim
azy az; o Aom

A= B H N (l)
an1 An2 Anm

Each element of matrix (1), a;;, represents intensity. With this intensity matrix, it is possible to calculate the
average brightness u, (2), the standard deviation of brightness o, (3), and the difference between the peak and
minimum intensity 4, (4).

Ug = — i=1 Z;’Q aij- 2

n-m

Og = \/; 1 Xje (aij - Hg)z- (3)

n-m

4, = max(ai]-) - min(ai]-). 4

These estimates allow for an assessment of general intensity characteristics. However, for a more detailed analysis
of the image and the application of morphological methods, it is necessary to remove the “noise component” using
thresholding or simplest tone correction (5).

0 if x<L
f(x) =x if L<x<H, (5)
0 if x>H

where x = A(i, j) — the original pixel intensity.

f(x) — adjusted intensity.

L and H are the calibration parameters of the device.

Representing the image as a matrix (1) also enables the calculation of the center of mass (x,,y,) as follows:

— 1 n m i . —_ 1 n m i
Xe = 3 di=1 Lj=1 ] " Qjs Ve = 3 Li=1 Zj=1 1 Qij (6)
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where M is the “mass” of the image (7).
M = Z?Q ;'1:1 A[l][l] )

Utilising equations (6) and (7), it is feasible to estimate the locations of the centers of the inscribed and
circumscribed circles, the relative positions of these centers (mass center, inscribed circle center, circumscribed circle
center), as well as the radii of such circles. These parameters are features that have been extracted from the GDV image.
In order to delineate the petals' boundaries with greater clarity, a morphological operation known as opening (sequential
erosion and dilation) is performed with a kernel k,, (8).

0 1 0
kp=1 1 1. (8)
0 1 0

The selection of (8) is predicated on the premise that n and m are ordinarily modest values, and the shortest
distance between petals is ordinarily merely a small number of elements of matrix A (1). Subsequently, the erosion (9)
and dilation (10) operations are performed in sequence (morphological opening).

Aer(i,)) = min{AG + kj + DI (kD € kp, ), (9)
Aopen(i:j) = max{ A4, + k,j + D | (k1) € k. }. (10)

After the opening operation, a slicing operation of the unwrapping is performed. This step is necessary to cut the
petals correctly, as even after the opening operation, there may still be “stuck” petals. To address this issue, additional
image processing is carried out in three steps (see Figure 2):

— unwrapping;
— analysis of the height map;

Analysis of
the height map

. -.Shce

(c)
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Figure 2. Example of performing petal refinement operations: (a) Example of morphology result. (b) Example of
performing a unwrapping. (c) Example of analysis of the height map and slicing. (d) Comparison before and after.

Following the implementation of the aforementioned transformation, the identification of petal components can be
accomplished through the utilisation of connected component analysis. The ascertainment of the locations of the
aforementioned petals enables the establishment of the guidelines that are directed towards the centre of mass of each
individual petal. The vector d; of the guiding line from the center of mass of the entire GDV image to the center of
mass of the petal is denoted by the formula (11), and the vector of lines is denoted by the formula (12).

X; — X,
i ~ c' (11)
Vi Ve

X1 — Xc X2 — X¢ Xn — X¢

Vi =YV Y2 =Y Yn — Ve } (12)

di =
Vo = (@8} =

We calculate the angles 6; between the lines (13), which also is features ® = {6,,0,, ...,0, }, identifying the
class of the GDV image.

_ Xi — Xc
6; = arccos (J(xi—xc)z = (yi—yc)z)' (13)

Let 7, be the vector containing the coordinate vectors of the petals. It is defined by the formulas (14) and (15). The
vector of projections of the pixels of the petals onto the corresponding guides is defined by the formula (16).

. Vo = Vo1, Vz -} (19)
Vpl = (xpiliypil); (xpiz_,%/piz), ""&pl’n'ypin)v (15)
P = {projch Vp1,Proja, Vpa, }. (16)

where projg, Z{ is a vector in which each element is a petal point projected onto the guiding line d;. Using this
vector, it is possible to determine the length of each petal by formula (17).

len; = max(projdi @) — min(projdi m) a7

In the event of the projection being made onto a line perpendicular to d;, the width can also be computed. It is
evident that both length and width are features of the GDV image.

Another feature of the characteristics of GDV images is the presence of structuredness (S,r) and noisiness (Syr)
(see formulas (18) and (19)). The determination of these parameters is achieved through the utilisation of spectral
transformation techniques, with the Discrete Cosine Transform serving as a representative example (see formula (20)).

Cluv) = 2;& Zymz—ol A(x,y) cos ( (2x +:)un ) cos ( (zy;rr;)vn ), (18)

2
Sip = Z(u,v)ELF IC (u, 17)|2' (19)

Sur = Z(u,v)EHF |C(U. 17)|2-(20)

2
vnm

In this text, the term “low-frequency coefficient region” is abbreviated to “LF”, and the term “high-frequency
coefficient region” is abbreviated to “HF”.

Utilising the aforementioned features and their derivatives, it is feasible to formulate a vector of numerical values,
wherein each element corresponds to a numerical expression of a qualitative feature. This vector serves as the numerical
representation of the GDV image.

3. Results

The formation of a set of features that serve to identify GDV images was achieved through the development of a
processing pipeline. This pipeline involves the utilisation of an image processor, which is employed to extract
quantitative features from the image. These features are then forwarded to the clustering module, which enables data
visualisation, provides an initial understanding of the structure of the GDV images used, and generates a dataset that is
then passed to the machine learning module (see Figure 3).



In order to evaluate the applicability of the method, a dataset of GDV images was collected (see Table 1 and
Figure 4). This dataset represents images of water with various impurities and additives, including distilled water,
filtered tap water, water from three different springs, water with added magnesium, water with added salt, and water
with added shungite. A sample was obtained from one of the springs and subjected to treatment using a coil that
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Figure 3. Data flow between modules

generated an electromagnetic field (EMF).

Table 1. Description of classes

Class Description Number of objects
1 Filtered tap water 10080
2 Distilled water 9040
3 Spring 3 105
4 Spring 3, EMF-treated 1513
5 Spring 1 60
6 Spring 2 60
7 Tea with sugar 15
8 Water with magnesium additive 10
9 Water with magnesium additive, exposed to UV 20

light for 2-5 minutes

10 Water with salt additive 30
11 Water with shungite additive 20
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(a) (b) (c) (d)

Figure 4. Class examples: (a) Class 1 (filtered tap water). (b) Class 2 (distilled water). (c) Class 3 (spring 3). (d)
Class 4 (spring 3 + EMF). (e) Class 5 (spring 1). (f) Class 6 (spring 2). (g) Class 7 (tea with sugar). (h) Class 8
(magnesium). (i) Class 9 (magnesium + UV). (j) Class 10 (salt). (k) Class 11 (shungite).

The selected images are passed to the image processor module (see Figure 3), which extracts approximately 57
features as a feature space. In particular, the following key features are extracted:

— number of pixels with and without noise, statistical characteristics of pixel distributions;
— mean intensity and standard deviation of intensity;

— radii of circles;

— difference between the center of mass and the centers of the circles;

— characteristics of "petals": number, size, positioning, etc.;

—  characteristics of noisiness;

The resulting feature space of a GDV image allows it to be assigned to a particular class. The purpose of the
clustering module is to visualise the multidimensional feature space of the GDV images by projecting them onto a 2D
plane (see Figure 5). Each point on the plane is representative of a GDV object, colored according to its associated
class/cluster. For instance, blue and dark green points (labelled 1 and 2, respectively) represent filtered tap water,
turquoise (labelled 3) denotes distilled water, and so on. This approach facilitates exploratory data analysis.
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Figure 5. GDV-gram projection in feature space

Following a thorough analysis of the clustering results and subject field, a dataset is compiled in the form of GDV
object features and class labels and fed to the machine learning module. The following models are employed: logistic
regression (logreg), decision tree (DT), random forest (RF), gradient boosting, support vector machines (SVM), and k-
nearest neighbors (KNN).

The dataset was segmented into two distinct components: 80% was allocated to the training set, while the
remaining 20% was designated for the test set. The machine learning models were trained on the training dataset and
validated on the test dataset. During the training phase, the models were not permitted to access the test dataset objects.

The performance metrics reported hereinafter are calculated using a weighted approach that takes into account the
number of objects in each class.

A selection of metrics is presented in Table 2.

Table 2. Model training metrics

Model Train dataset Test dataset
Metric Score Metric Score
Logreg accuracy 0.991 accuracy 0.990
precision 0.991 precision 0.989
recall 0.991 recall 0.990
fl 0.991 fl 0.989
Decision Tree accuracy 0.997 accuracy 0.986
precision 0.997 precision 0.987
recall 0.997 recall 0.986
fl 0.997 fl 0.986
Random forest accuracy 0.999 accuracy 0.995
precision 0.999 precision 0.995
recall 0.999 recall 0.995
fl 0.999 fl 0.994
Gradient boosting | accuracy 1.000 accuracy 0.997
precision 1.000 precision 0.997
recall 1.000 recall 0.997
fl 1.000 fl 0.997
SVvC accuracy 0.995 accuracy 0.992
precision 0.995 precision 0.992
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recall 0.995 recall 0.992
fl 0.994 fl 0.992
KNN accuracy 0.996 accuracy 0.995
precision 0.996 precision 0.995
recall 0.996 recall 0.995
fl 0.996 f1 0.995

All models except gradient boosting confused classes 1, 5, and 6 (filtered tap, spring 1, and spring 2). Specifically,
the confusion matrix for logistic regression is shown in Figure 6 (a). Gradient boosting was able to recognize the
mentioned classes with minimal error. Its confusion matrix is presented in Figure 6 (b).
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matrix of gradient boosting.
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Some of the selected hyperparameters for the models are listed in Table 3.

Table 3. Selected hyperparameters of some models

Model Hyperparameter Value
Logreg C (inverse of regularization strength) 1.0
Decision Tree max depth 25
min samples leaf 3
min samples split 2
Random forest estimators num 150
max depth 25
min samples leaf 3
min samples split 2
max samples 80%
max features 80%
Gradient boosting estimators num 100
max depth 3
learning rate 0.1
min child weight 1
max samples 80%
max features 80%
SvC kernel rbf
KNN n neighbors 5

It can be concluded from the results obtained that images of water droplets GDV can be classified using machine
learning models. All trained models demonstrate a high degree of confusion between filtered tap water and spring
water, with XGBoost being the sole exception. Therefore, on the basis of the given dataset, XGBoost is the most
suitable model.

4, Conclusion

In the course of the study, a methodology for the analysis of GDV images through the application of machine
learning algorithms was developed. This methodology was employed for the classification of liquid solutions, with the
capacity to accurately differentiate between the various types presented. A logical direction for further research is to
expand the range of liquid classes under investigation.
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