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1. Introduction 

 

The contemporary enhancement in computational capabilities facilitates the utilisation of mathematical models 

across diverse disciplines, encompassing fluid analysis. Conventional techniques for fluid analysis, including mass 

spectrometry, chromatography, spectrophotometry, photometry, polarography, and potentiometry, are employed in both 

manual and automated modes with the assistance of machine learning methodologies [1-4]. These approaches 

necessitate the execution of measurements and analysis in a laboratory setting, utilising specialised equipment. The 

operation of such equipment necessitates a particular set of competencies and consumables, whilst the analytical 

process itself is s time-consuming. 

 

The behavior of water in the presence of magnetic fields has been a subject of scientific interest for a 

considerable period. A significant challenge in this field pertains to the complexity of evaluating the impact of magnetic 

fields on water. Fortunately, in the last few years, several studies have demonstrated the influence of weak and super-
weak constant and variable magnetic fields on aqueous systems that do not contain admixtures sensitive to magnetic 

fields. In the latest review [5] presented conceptual ideas and demonstrated a wide range of practical applications in 

medicine [6-7], agriculture [8-9], wastewater treatment [10], and human health parameters [11]. Therefore, a large 

amount of experimental data has been collected, proving that weak and super-weak magnetic fields have reproducible 

effects on water solutions. These effects are most prominent when static and variable magnetic fields are used 

simultaneously. On the other hand, reliable data recently suggested that magnetic and electromagnetic fields could 

significantly influence the properties of highly diluted aqueous solutions [12]. 
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The utilisation of machine learning (ML) methodologies within the domain of mass spectrometry (MS) has 

been a subject of considerable research interest [1]. It is evident that MS is confronted with challenges at each stage of 

the process, from the initial collection of data to its subsequent interpretation. To elaborate, the data complexity (for 

example, the dimensionality of the feature space) poses significant challenges. Machine learning provides tools to 

address these issues; however, further development is required in the areas of standardization and explain ability. 

Furthermore, the study [2] dedicated to imaging mass spectrometry (IMS) discusses challenges in interpretability 

(relating machine learning (ML) results to physicochemical patterns) and the high dimensionality of the feature space. 

In order to address the challenges posed by data complexity, the employment of unsupervised machine 
learning algorithms has become a prevalent approach. For instance, the review article [3] focuses on the use of 

unsupervised ML methods for exploratory data analysis in imaging mass spectrometry (IMS). The text is organized 

around three main directions: factorization, clustering, and manifold learning. Unsupervised methods are well-suited for 

the analysis of IMS data due to the fact that IMS produces large and complex datasets containing spatial and spectral 

information. 

 

The employment of screening instruments such as online UV-Vis spectrophotometers facilitates real-time 

monitoring of drinking water quality. However, these instruments necessitate configuration and calibration, and their 

maintenance requires expertise in spectroscopy [4]. The article observes that elevated turbidity or organic content 

necessitates regular recalibration (due to the distortion of spectra caused by high turbidity or concentrations of organic 

matter). 

 
The utilization of gas discharge visualization (GDV) methodologies [13] has been demonstrated to facilitate 

the circumvention of the aforementioned issues. For instance, the analysis time is approximately one minute, and no 

special laboratory conditions or consumables are required. The output of GDV analysis is an image, and the complexity 

of the data is dependent on the specific task and the processing methods employed [13-15]. 

Machine learning has also been employed in the domain of gas discharge visualization, with numerous studies 

attaining substantial outcomes. 

 

In study [16], a mathematical model of GDV parameters was developed. This model utilised glow intensity 

and average area of the GDV images as features, and a health deviation index as the target label, with this index being 

based on questionnaires. The k-means algorithm was utilised to categorise the 20 subjects into distinct subclasses. 

Subsequently, the distances between each sample and an “ideal health state” (defined in a phase space) were calculated. 
A linear relationship was established between the distance and the health deviation index. 

 

In the study [17], a GDV method was developed for the analysis of biological objects in the liquid phase. The 

method was primarily focused on the diagnosis of thyroid diseases, with the magnesium concentration in oral fluid 

being measured as a key indicator. Utilising the proposed mathematical model, the authors established a correlation 

between GDV streamer characteristics and the physicochemical properties of the fluid and voltage parameters. The 

streamer characteristics were determined using classical computer vision. The dataset under consideration consisted of 

60 objects. The feasibility of detecting salt ions such as NaCl, MgSO4, KCl, CaCl2, FeSO4, or their complexes in a 

single liquid-phase biological object (LPBO) was demonstrated. 

 

In the study [18], features extracted from GDV images were employed to train an SVM (Support Vector 
Machine) machine learning model. The total number of objects involved in the study was 85. 

A number of studies [19-20] have explored the possibility of disease classification using machine learning 

algorithms based on features extracted from GDV. The target labels were extracted from ultrasound diagnostic reports. 

The dataset under consideration consisted of approximately 170 objects. 

 

Article [21] posits a methodology for the identification of diseases through the utilisation of GDV. Following 

an initial series of preprocessing steps that utilise classical computer vision techniques, a segmentation approach is then 

employed that is based on color intensity. This segmentation process is utilised for the purpose of identifying regions of 

high energy. Subsequently, feature extraction is conducted utilising Particle Swarm Optimization (PSO), followed by 

disease classification employing Bayesian Gaussian Mixture Models (BGMMs), which are models based on bivariate 

Gaussian mixture models. 

 

2. Analysis of gdv images for classification of liquid solutions 

 

A considerable challenge faced by researchers and practitioners working with data is the limited number of class 

instances in datasets. In the specific case of image-related tasks, such constraints can have a substantial detrimental 

effect on the training process of machine learning models. A viable approach to address this issue is the application of 

classical machine learning methods. In this context, it is important to note that object features can be extracted using 

traditional engineering techniques such as classical computer vision. The efficacy of these methods is twofold: firstly, 

they enhance the quality of feature extraction, and secondly, they improve the human interpretability of model results. 
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The acquisition and analysis of GDV images is facilitated by the utilisation of the standard Bio-Well Element 

device. A volume of the test liquid, predetermined by the operator, is then applied to the device's electrode. The subject 

is exposed to an electromagnetic field, which results in the emission of a glow that is then captured by the GDV camera. 

The resulting image is illustrated in Figure 1. 

 

 
 

Figure 1. Example of a GDV image of a water droplet 

 

The images in the GDV manifest as “petals” surrounding the droplet (petal in Figure 1). The configuration of 

these particles, including their shape, number, and positioning, is contingent upon the nature of the liquid under 

analysis. Given the observed similarity in shape between the GDV images, it is rational to employ computer vision 

methodologies for their analysis. The resulting image can thus be represented as an intensity matrix, where the number 

of rows and columns corresponds to the height and width of the image, respectively. The matrix in question is denoted 

by 𝐴 (1), and its number of rows and columns are designated as 𝑛 and 𝑚, respectively: 

 

𝐴 =  

 𝑎11  𝑎12  ⋯  𝑎1𝑚  
 𝑎21  𝑎22  ⋯  𝑎2𝑚  
 ⋮  ⋮   ⋮ 

 𝑎𝑛1  𝑎𝑛2  ⋯  𝑎𝑛𝑚  

.  (1) 

 

Each element of matrix (1), 𝑎𝑖𝑗 , represents intensity. With this intensity matrix, it is possible to calculate the 

average brightness 𝜇𝑔 (2), the standard deviation of brightness 𝜎𝑔 (3), and the difference between the peak and 

minimum intensity 𝛥𝑔 (4). 

 

𝜇𝑔  =  
1

𝑛 ⋅ 𝑚
 ∑  𝑛

𝑖=1 ∑  𝑚
𝑗=1 𝑎𝑖𝑗 . (2) 

𝜎𝑔  =  √
1

𝑛 ⋅ 𝑚
 ∑  𝑛

𝑖=1 ∑  𝑚
𝑗=1 (𝑎𝑖𝑗  −  𝜇𝑔)

2
. (3) 

𝛥𝑔  =  max
 

(𝑎𝑖𝑗) − min
 

(𝑎𝑖𝑗). (4) 

 

These estimates allow for an assessment of general intensity characteristics. However, for a more detailed analysis 
of the image and the application of morphological methods, it is necessary to remove the “noise component” using 

thresholding or simplest tone correction (5). 

 

𝑓(𝑥)  =
0  if   x <  L           
𝑥  if   L ≤  x ≤  H 
0  if   x >  H

, (5) 

where 𝑥 =  𝐴(𝑖, 𝑗) — the original pixel intensity. 

𝑓(𝑥) — adjusted intensity. 

𝐿 and 𝐻 are the calibration parameters of the device. 

Representing the image as a matrix (1) also enables the calculation of the center of mass (𝑥𝑐 , 𝑦𝑐) as follows: 

 

𝑥𝑐  =  
1

𝑀
 ∑  𝑛

𝑖=1 ∑  𝑚
𝑗=1 𝑗 ⋅  𝑎𝑖𝑗 ;  𝑦𝑐  =  

1

𝑀
 ∑  𝑛

𝑖=1 ∑  𝑚
𝑗=1 𝑖 ⋅  𝑎𝑖𝑗 ,   (6) 
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where 𝑀 is the “mass” of the image (7). 

 

𝑀 =  ∑  𝑚
𝑖=1 ∑  𝑛

𝑗=1 𝐴[𝑖][𝑗].  (7) 

 

Utilising equations (6) and (7), it is feasible to estimate the locations of the centers of the inscribed and 

circumscribed circles, the relative positions of these centers (mass center, inscribed circle center, circumscribed circle 

center), as well as the radii of such circles. These parameters are features that have been extracted from the GDV image. 

In order to delineate the petals' boundaries with greater clarity, a morphological operation known as opening (sequential 

erosion and dilation) is performed with a kernel 𝑘𝑚 (8). 

 

𝑘𝑚  =  
0  1  0 
1  1  1 
0  1  0

. (8) 

 

The selection of (8) is predicated on the premise that 𝑛 and 𝑚 are ordinarily modest values, and the shortest 

distance between petals is ordinarily merely a small number of elements of matrix 𝐴 (1). Subsequently, the erosion (9) 

and dilation (10) operations are performed in sequence (morphological opening). 

 

𝐴𝑒𝑟(𝑖, 𝑗)  =  min
 

{ 𝐴(𝑖 +  𝑘, 𝑗 +  𝑙) | (𝑘, 𝑙)  ∈  𝑘𝑚  }, (9) 

𝐴𝑜𝑝𝑒𝑛(𝑖, 𝑗)  =  max
 

{ 𝐴𝑒𝑟(𝑖 +  𝑘, 𝑗 +  𝑙) | (𝑘, 𝑙)  ∈  𝑘𝑚  }. (10) 

 
After the opening operation, a slicing operation of the unwrapping is performed. This step is necessary to cut the 

petals correctly, as even after the opening operation, there may still be “stuck” petals. To address this issue, additional 

image processing is carried out in three steps (see Figure 2): 

 

 

– unwrapping; 

– analysis of the height map; 

– slicing. 
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Figure 2. Example of performing petal refinement operations: (a) Example of morphology result. (b) Example of 

performing a unwrapping. (c) Example of analysis of the height map and slicing. (d) Comparison before and after. 

 

Following the implementation of the aforementioned transformation, the identification of petal components can be 

accomplished through the utilisation of connected component analysis. The ascertainment of the locations of the 

aforementioned petals enables the establishment of the guidelines that are directed towards the centre of mass of each 

individual petal. The vector 𝑑𝑖 of the guiding line from the center of mass of the entire GDV image to the center of 

mass of the petal is denoted by the formula (11), and the vector of lines is denoted by the formula (12). 

 

𝑑𝑖  =  
𝑥𝑖  −  𝑥𝑐  
𝑦𝑖  −  𝑦𝑐

, (11) 

𝑉𝑑  =  { 𝑑1
⃗⃗⃗⃗ , 𝑑2

⃗⃗⃗⃗ , … , 𝑑𝑛
⃗⃗ ⃗⃗  }  =  { 

𝑥1  − 𝑥𝑐  
𝑦1  −  𝑦𝑐

,
𝑥2  −  𝑥𝑐  
𝑦2  − 𝑦𝑐

, … ,
𝑥𝑛  −  𝑥𝑐  
𝑦𝑛  −  𝑦𝑐

 }. (12) 

 

We calculate the angles 𝜃𝑖 between the lines (13), which also is features 𝛩 =  { 𝜃1, 𝜃2, … , 𝜃𝑛 }, identifying the 

class of the GDV image. 

 

𝜃𝑖  =  arccos (
𝑥𝑖 − 𝑥𝑐

√(𝑥𝑖 − 𝑥𝑐)
2 + (𝑦𝑖 − 𝑦𝑐)

2
). (13) 

 

Let 𝑉𝑝 be the vector containing the coordinate vectors of the petals. It is defined by the formulas (14) and (15). The 

vector of projections of the pixels of the petals onto the corresponding guides is defined by the formula (16). 

 

𝑉𝑝⃗⃗  ⃗  =  {𝑉𝑝1
⃗⃗⃗⃗⃗⃗ , 𝑉𝑝2

⃗⃗⃗⃗⃗⃗ , … }, (14) 

𝑉𝑝𝑖
⃗⃗ ⃗⃗   =  (𝑥𝑝𝑖1, 𝑦𝑝𝑖1), (𝑥𝑝𝑖2, 𝑦𝑝𝑖2),… , (𝑥𝑝𝑖𝑛 , 𝑦𝑝𝑖𝑛),   (15) 

𝑃 =  {proj𝑑1
 𝑉𝑝1
⃗⃗⃗⃗⃗⃗ , proj𝑑2

 𝑉𝑝2
⃗⃗⃗⃗⃗⃗ , … },  (16) 

 

where proj𝑑𝑖
 𝑉𝑝𝑖
⃗⃗ ⃗⃗    is a vector in which each element is a petal point projected onto the guiding line 𝑑𝑖. Using this 

vector, it is possible to determine the length of each petal by formula (17). 

 

len𝑖  =  max
 

(proj𝑑𝑖
 𝑉𝑝𝑖
⃗⃗ ⃗⃗  )  − min

 
(proj𝑑𝑖

 𝑉𝑝𝑖
⃗⃗ ⃗⃗  ). (17) 

 

In the event of the projection being made onto a line perpendicular to 𝑑𝑖, the width can also be computed. It is 

evident that both length and width are features of the GDV image. 

Another feature of the characteristics of GDV images is the presence of structuredness (𝑆𝐿𝐹) and noisiness (𝑆𝐻𝐹) 

(see formulas (18) and (19)). The determination of these parameters is achieved through the utilisation of spectral 

transformation techniques, with the Discrete Cosine Transform serving as a representative example (see formula (20)). 

 

𝐶(𝑢, 𝑣)  =  
2

√𝑛 𝑚
 ∑  𝑛−1

𝑥=0 ∑  𝑚−1
𝑦=0 𝐴(𝑥, 𝑦) cos ( 

(2𝑥 + 1)𝑢𝜋

2𝑛
 ) cos ( 

(2𝑦 + 1)𝑣𝜋

2𝑚
 ), (18) 

𝑆𝐿𝐹  =  ∑  (𝑢,𝑣) ∈ 𝐿𝐹 |𝐶(𝑢, 𝑣)|2, (19) 

𝑆𝐻𝐹  =  ∑  (𝑢,𝑣) ∈ 𝐻𝐹 |𝐶(𝑢, 𝑣)|2. (20) 

 

In this text, the term “low-frequency coefficient region” is abbreviated to “LF”, and the term “high-frequency 

coefficient region” is abbreviated to “HF”. 

Utilising the aforementioned features and their derivatives, it is feasible to formulate a vector of numerical values, 

wherein each element corresponds to a numerical expression of a qualitative feature. This vector serves as the numerical 

representation of the GDV image. 

 

3. Results 

 

The formation of a set of features that serve to identify GDV images was achieved through the development of a 

processing pipeline. This pipeline involves the utilisation of an image processor, which is employed to extract 
quantitative features from the image. These features are then forwarded to the clustering module, which enables data 

visualisation, provides an initial understanding of the structure of the GDV images used, and generates a dataset that is 

then passed to the machine learning module (see Figure 3). 
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Figure 3. Data flow between modules 

 

In order to evaluate the applicability of the method, a dataset of GDV images was collected (see Table 1 and 

Figure 4). This dataset represents images of water with various impurities and additives, including distilled water, 

filtered tap water, water from three different springs, water with added magnesium, water with added salt, and water 

with added shungite. A sample was obtained from one of the springs and subjected to treatment using a coil that 

generated an electromagnetic field (EMF). 

 

Table 1. Description of classes 
 

Class Description Number of objects 

1 Filtered tap water 10080 

2 Distilled water 9040 

3 Spring 3 105 

4 Spring 3, EMF-treated 1513 

5 Spring 1 60 

6 Spring 2 60 

7 Tea with sugar 15 

8 Water with magnesium additive 10 

9 Water with magnesium additive, exposed to UV 

light for 2–5 minutes 

20 

10 Water with salt additive 30 

11 Water with shungite additive 20 
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Figure 4. Class examples: (a) Class 1 (filtered tap water). (b) Class 2 (distilled water). (c) Class 3 (spring 3). (d) 

Class 4 (spring 3 + EMF). (e) Class 5 (spring 1). (f) Class 6 (spring 2). (g) Class 7 (tea with sugar). (h) Class 8 

(magnesium). (i) Class 9 (magnesium + UV). (j) Class 10 (salt). (k) Class 11 (shungite). 

 

The selected images are passed to the image processor module (see Figure 3), which extracts approximately 57 

features as a feature space. In particular, the following key features are extracted: 

The resulting feature space of a GDV image allows it to be assigned to a particular class. The purpose of the 

clustering module is to visualise the multidimensional feature space of the GDV images by projecting them onto a 2D 

plane (see Figure 5). Each point on the plane is representative of a GDV object, colored according to its associated 

class/cluster. For instance, blue and dark green points (labelled 1 and 2, respectively) represent filtered tap water, 

turquoise (labelled 3) denotes distilled water, and so on. This approach facilitates exploratory data analysis. 

 

– number of pixels with and without noise, statistical characteristics of pixel distributions; 

– mean intensity and standard deviation of intensity; 

– radii of circles; 

– difference between the center of mass and the centers of the circles; 

– characteristics of "petals": number, size, positioning, etc.; 

– characteristics of noisiness; 

– characteristics from spectral transforms. 
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Figure 5. GDV-gram projection in feature space 

 

Following a thorough analysis of the clustering results and subject field, a dataset is compiled in the form of GDV 

object features and class labels and fed to the machine learning module. The following models are employed: logistic 

regression (logreg), decision tree (DT), random forest (RF), gradient boosting, support vector machines (SVM), and k-

nearest neighbors (KNN). 

The dataset was segmented into two distinct components: 80% was allocated to the training set, while the 

remaining 20% was designated for the test set. The machine learning models were trained on the training dataset and 

validated on the test dataset. During the training phase, the models were not permitted to access the test dataset objects. 
The performance metrics reported hereinafter are calculated using a weighted approach that takes into account the 

number of objects in each class. 

A selection of metrics is presented in Table 2. 

 

Table 2. Model training metrics 

 

Model Train dataset Test dataset 
Metric Score Metric Score 

Logreg accuracy 0.991 accuracy 0.990 
precision 0.991 precision 0.989 
recall 0.991 recall 0.990 
f1 0.991 f1 0.989 

Decision Tree accuracy 0.997 accuracy 0.986 

precision 0.997 precision 0.987 

recall 0.997 recall 0.986 

f1 0.997 f1 0.986 

Random forest accuracy 0.999 accuracy 0.995 

precision 0.999 precision 0.995 

recall 0.999 recall 0.995 

f1 0.999 f1 0.994 

Gradient boosting accuracy 1.000 accuracy 0.997 

precision 1.000 precision 0.997 

recall 1.000 recall 0.997 

f1 1.000 f1 0.997 

SVC accuracy 0.995 accuracy 0.992 

precision 0.995 precision 0.992 
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recall 0.995 recall 0.992 

f1 0.994 f1 0.992 

KNN accuracy 0.996 accuracy 0.995 

precision 0.996 precision 0.995 

recall 0.996 recall 0.995 

f1 0.996 f1 0.995 

 

All models except gradient boosting confused classes 1, 5, and 6 (filtered tap, spring 1, and spring 2). Specifically, 

the confusion matrix for logistic regression is shown in Figure 6 (a). Gradient boosting was able to recognize the 

mentioned classes with minimal error. Its confusion matrix is presented in Figure 6 (b). 

 

 
 

Figure 6. Confusion matrix for train and test datasets: (a) Confusion matrix of logistic regression. (b) Confusion 

matrix of gradient boosting. 
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Some of the selected hyperparameters for the models are listed in Table 3. 

 

 

 

Table 3. Selected hyperparameters of some models 

 

Model Hyperparameter Value 
Logreg C (inverse of regularization strength) 1.0 
Decision Tree max depth 25 

min samples leaf 3 
min samples split 2 

Random forest estimators num 150 
max depth 25 

min samples leaf 3 

min samples split 2 

max samples 80% 

max features 80% 

Gradient boosting estimators num 100 

max depth 3 

learning rate 0.1 

min child weight 1 

max samples 80% 

max features 80% 

SVC kernel rbf 

KNN n neighbors 5 

 
It can be concluded from the results obtained that images of water droplets GDV can be classified using machine 

learning models. All trained models demonstrate a high degree of confusion between filtered tap water and spring 

water, with XGBoost being the sole exception. Therefore, on the basis of the given dataset, XGBoost is the most 

suitable model. 

 

4. Conclusion 

 

 In the course of the study, a methodology for the analysis of GDV images through the application of machine 

learning algorithms was developed. This methodology was employed for the classification of liquid solutions, with the 

capacity to accurately differentiate between the various types presented. A logical direction for further research is to 

expand the range of liquid classes under investigation. 
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