

International Journal of Studies in Psychology

E-ISSN: 2710-2327, P-ISSN: 2710-2319

Vol 5, No. 3, pp 81-87. https://doi.org/10.38140/ijspsy.v5i3.2170

GAERPSY Publishing, 2025

Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivatives (CC BY-NC-ND 4.0) licence.

History of the article

Submitted 01 May 2025 Revised 14 May 2025 Accepted 20 May 2025 Published 30 October 2025

Medical biometrics based on Gas Discharge Visualisation technology approach to survival research: A case study

¹*Raul Valverde¹, ²Konstantin Korotkov¹, ³Jennifer Hamilton¹, and ⁴Chet Swanson¹

¹Concordia University, Canada

²Bio-well Corporation, USA

3,4Consciousness Research Foundation, USA

1*Primary author: raul.valverde@concordia.ca

Abstract — Medical biometrics based on the gas discharge visualisation (GDV) technique is used in medicine to monitor patients and compare their natural electro-photonic emission before and after surgeries, cancer treatments, energy healing, and physiotherapy. This article proposes the use of GDV technology to test the survival hypothesis. The survival hypothesis asserts that a person's personality and consciousness survive the body's physical death. This study aims to use GDV to identify psychoemotional functions through a person's fingertips to measure personality before and after death, to prove the survival of personality after death. Psychoemotional functions are linked to the personality of the individual. In this article, a case study is presented with psychoemotional functions measurements using GDV before and after death, then a statistical test for the difference of means was performed to determine if the difference between the average values (means) of energies of the before and after death is statistically significant to test the survival hypothesis. Preliminary results are reported and show the potential of this technology to prove the survival of the personality hypothesis.

Keywords: Survival hypothesis, GDV, Bioenergy model, psychoemotional measurements, Near-death studies.

To cite this article (APA): Valverde, R., Korotkov, K., Hamilton, J., & Swanson, C. (2025). Medical biometrics based on Gas Discharge Visualisation technology approach to survival research: A case study. *International Journal of Studies in Psychology*, 5(3), 81-87. https://doi.org/10.38140/ijspsy.v5i3.2170

I. INTRODUCTION

THE SURVIVAL hypothesis proposes that a person's personality and consciousness continue to exist after their physical body dies (Valverde & Swanson, 2022). Near-death experiences (NDEs) occur when someone survives a heart arrest, a catastrophic illness, injury, or other severe life-threatening condition or incident. There is compelling evidence worldwide that these events are not a product of the imagination. Near-death research demonstrates that people from all walks of life, as well as many different ethnicities and religious beliefs, have consistent and similar experiences around the world. While neardeath experiences reveal something about the nature of consciousness, several variables limit research into this critical subject. These include the subject's wishful thinking, religious beliefs, and the inability to explain a reality that cannot be articulated using rational conventional language. However, Valverde and Swanson (2021) have proposed a new approach to understanding near-death experiences utilising the concept of unintelligibility that connects reports of near-death experiences to the possibility of conscious existence after death. They suggest using the quantum consciousness paradigm and the quantum hologram theory of consciousness to research near-death experiences (Valverde et al., 2022).

Hameroff and Chopra's (2011) propose that consciousness can exist outside the body, as in near-death experiences, which can be explained by the Penrose-Hameroff 'Orch OR' model. This quantum approach to consciousness connects brain processes (quantum computations inside neurons) to fluctuations in fundamental space-time geometry, which is the fine-scale structure of the universe. Recent evidence for significant

quantum coherence in warm biological systems, scale-free dynamics, and end-of-life brain activity supports the notion of a quantum basis for consciousness, which could conceivably exist independent of biology in various scalar planes in the space-time geometry of the Penrose-Hameroff Orch OR model (Valverde et al., 2024). Valverde (2019) also uses the quantum paradigm to explain that our consciousness does not exist in our brains or our bodies and that consciousness has a quantum origin.

Nevoit et al. (2023) presented a modern biophysical perspective on living biological systems consisting of electromagnetic fields. These fields generate ultra-weak photon emissions for all cells and play an essential role in communication and cell life throughout the body. Kostyuk et al. (2011) argue that gas discharge visualisation (GDV) is a non-intrusive technique that captures a person's physiological and psychoemotional status through the electrophotonic emissions placed on the surface of an impulse analyser. The GDV technique (Korotkov 2004) places an object in a highly intensive electromagnetic field (EMF). The object is separated from the electrode by a dielectric, a substance that does not conduct electricity but permits an electromagnetic field. Applying a voltage between the objects stops the electrode current from flowing between them. Instead, a potential difference builds up until a breakdown voltage is reached.

Electrons around the object start moving at this point, creating a current along the surface of the dielectric. As they move, the electrons collide with heavier gas molecules, wrenching out electrons and emitting quanta of light (photons). Each collision produces two electrons, so branching, tree-like light patterns occur. When an alternating current is used, avalanches of ionisation move away or towards the electrode core. The GDV uses a camera to photograph the emitted photons and a computer program to analyse the images. This

allows us to determine the energy levels of different electromagnetic fields that carry quantum information. This information can be interpreted for various applications, including psychology.

In their studies of top athletes, Bundzen et al. (2004) concluded that an individual's openness to experience influences their energy levels. Open individuals are described by Costa and McCrae (1992) as imaginative, adventurous, humorous, outgoing, curious, optimistic, and excitable, which is reflected in their energy reserves. This technology can accurately measure personality, as energy levels are linked to personality traits like openness.

This preliminary study sets out our proposal to use GDV technology to measure personality before and after death. We will test the Survival Hypothesis using the case study methodology approach. The preliminary results show the potential of this technology to probe the Survival Hypothesis.

II. LITERATURE REVIEW

Valverde & Korotkov (2025) conducted a literature review that shows the relevance of GDV in psychology research by showing how it has been used to capture stress, emotions, and anxiety. Dobson and O'Keeffe (2010) researched using photonic technologies for personality measurement. They conducted an empirical study of the relationships between photon emissions as measured by GDV and the Big Five personality dimensions as measured by NEO-FFI (Costa & McCrae, 1992) amongst samples in Russia (N = 35) and the UK (N = 42). The research yielded significant results for extraversion, though these were less pronounced and inconsistent than those for openness.

Kostyuk et al. (2010) reported a study using computational bioelectrography based on GDV to investigate an individual's physiological and psychoemotional functional states. The study evaluated anxiety in learning English as a second language. Rastogi et al. (2021) present a model using GDV to measure different biophysical factors and relate them to different human illnesses and psychological conditions, such as stress.

Eastern philosophical beliefs and acupuncture medicine posit the existence of seven "Nervous centers," or integrated energy centers, which are believed to influence physical, mental, emotional, and spiritual well-being. These energy "discs" are situated or integrated inside the spinal column at multiple sites, commencing at the coccyx and extending to the top of the head. Each Nervous center is said to vibrate at a certain frequency level. GDV technology is designed to measure the energy level of a human at different energy centers (nervous centers) of the human body, which is directly related to the consciousness level of a person (Valverde et al., 2023).

The bioenergy model used in acupuncture is based on the notion that a hologram of the ethereal body supports the physical body. The ethereal body has seven nervous centers, which interpenetrate organs and entrails. The emotional body operates at a higher frequency and has seven nervous centers. This body is responsible for the emotional component of human consciousness. The intellectual part of human consciousness is represented by the mental body, which, at a higher frequency, connects to the other bodies using the seven nervous centers (Levin & Mead, 2008). Veerabrahmachar et al. (2023) conducted a study that links every nervous center to a specific frequency. The study involved exposing subjects to different frequencies and measuring the resulting resonances with GDV technology. The study supports the bioenergy model that explains that the seven nervous centers are meant to exchange information with the biofield, which is composed of several fields that carry emotional and mental information between consciousness and the physical body. Barsotti et al. (2023) conducted a similar study that explored the effect on the human biofield of a Sri Yantra/Durga Stone that emits a frequency pattern. This study also used GDV technology to understand the effect of frequency on the biofield and to validate some aspects of the bioenergy model. The bioenergy model is compatible with the Penrose-Hameroff Orch OR model that proposes that consciousness works at the quantum level, is

non-local, and not only at the physical level (Hameroff & Chopra, 2011).

This research proposes using the bioenergy model to test the human personality survival hypothesis. Korotkov (2014) used the same model for survival research, but this study will extend the scope by testing the human consciousness personality survival hypothesis. The seven energy nervous centers of the bioenergy model have been researched in the past, mainly to link them to human consciousness's emotional and mental states. Jain and Kumar (2024) used the bioenergy model to test the individual's optimism and pessimism personality traits. This research establishes an interaction between the personality and the nervous centers of the bioenergy model within the realm of human psychology. The authors found an interrelationship between human psychology and the nervous centers of the bioenergy model, and these seven align with the Myers-Briggs Type Indicator (MBTI) personality traits with optimistic and pessimistic attitudes. Myers et. al. (1998) developed a framework to analyse human personalities that correlate with the human archetypes proposed by Jung (1971).

Dwivedi (2018) maps nervous centers to psychoemotional traits. This work aligns Beshara's (2013) findings on the Anahata nervous center, which relates the traditional concept of nervous centers present in the body to the four Jungian aspects of the MBTI framework. These aspects are used to assess an individual's personality. These sixteen personality types are Extraversion, Introversion, Sensing, Intuiting, Thinking, Feeling, Judging, and Perceiving. Rastogi et al. (2021) also confirm the interpretation of Dwivedi (2018). Chase's (2018) personality archetypes, derived from nervous centers, hold practical clinical value in acupuncture, further validating Dwivedi's (2018) interpretation. Table 1 shows the mapping between nervous centers based on the ayurdeva medicinal model (Sweta et al., 2017), MBTI type indicators, Jungian cognitive functions, and the interpretative rationale for the mapping.

III. OBJECTIVE OF THE STUDY

This research proposes the use of GDV technology to measure personality before and after death to test the hypothesis of survival of personality.

IV. METHODS

Research approach

The research approach used in this study was the case study methodology. The case study methodology is the best approach for this research because it is "exploratory" (Stake, 1995). Case studies are especially useful when complex variables interact to produce the phenomena under investigation (Kinnear & Taylor, 1996). Further, it is challenging to find participants close to death interested in participating in the research. This makes case study methodology more viable for this research as it relies on a single participant (Stake, 1995).

Research design

One participant was selected for the case study and recruited using ethical protocols discussed in the next section. A personality test was conducted to identify the MBTI type indicator for the case study. A map of nervous centers to the MBTI personality types and Jungian cognitive functions was created to link energies identified in the bioenergy model with MBTI types. Data was collected with the use of GDV technology to identify psychoemotional functions through a person's fingertips to measure personality before and after death to prove the survival of personality after death. The personality was captured by using energy measurements with the GDV device. A statistical analysis was performed to identify the most predominant energy before death. This predominant energy is associated with an MBTI type of case study and represents the individual's personality. The MBTI type indicator identified in the personality test was compared with the one measured before death using GDV to validate the MBTI type of the case study. A statistical test for the difference of means was performed to determine if the difference between the average values (means) of energies before and after death is statistically significant to test the survival hypothesis.

Population and ethical considerations

For this research study, only one participant was recruited for the case study because the study was exploratory (Wholey, 2015). Ethical consideration required the signature of consent forms. The participant signed an informed consent form, which included a written and oral explanation of the research protocol. A licensed registered nurse (Jennifer Hamilton) verified that the participant was mentally cogent and could understand and consent. The participant was male and died from natural causes at his home in Iowa. One close family member of the participant was also asked to sign the consent form to permit the collection of data after the death of the participant. This form was required to ensure the family member agreed to collect data after the participant's death. The consent form stated that data privacy was a priority and that the participant's identity would be kept anonymous to protect his privacy. The documents were prepared with the consultation of a lawyer, ensuring full compliance with federal and state laws. The Consciousness Research Foundation, a company registered in Iowa, sponsored and was responsible for the project.

Data collection tools and research site

Data collection tools included GDV technology and a personality test using the Myers-Briggs Type Indicator (MBTI) (Myers et al., 1998). First, a personality test was given to the participant to establish the Myers-Briggs Type Indicator (MBTI). This established his personality archetype. Data was collected using a GDV device to identify the person's functional psychoemotional fingerprint using their fingertips.

Jennifer Hamilton, a registered nurse and co-author of this article, collected the data with the participant. She assisted the participant in collecting the data using the GDV device before death. After death, she collected the data by placing the participant's fingers in the GDV device. She ensured that the quality of the images met the GDV device's requirements for calculating the parameters required for the research.

Data analysis

The analysis of energy emission was based on intensity, area, and a conversion coefficient determined by experimentation.

Area is defined as the mean GDV image area derived from the single areas of glow. Intensity is the average GDV intensity of all the pixels with non-zero intensity in each electrophotonic finger image. These are calculated as the mean of the pixel areas and intensities obtained from the sum of all finger images captured during one measurement circle, divided by the total number of finger images. The conversion coefficient is determined by experimentation and is related to the optical system being used by the GDV. The energy in joules is calculated by multiplying the area by the average intensity and by the conversion coefficient (Hacker et al., 2005).

In GDV, the relation of the captured image to organs/organ systems is determined by Korotkov's (2004) bioenergy model. Energy for each nervous center relates to the properties of the glow in the corresponding sectors on the fingers. Data was collected daily about three weeks before the estimated time of death. Data was collected several times on the day of death to observe energy changes.

Each nervous center's energy was calculated as a percentage of the total energy before and after death. The mean and standard deviation for each nervous center's energy percentages were then calculated for the before and after death datasets. The nervous center with the highest percentage of energy was then selected for the before and after death datasets, based on the premise that this center describes the main personality traits of the person being researched.

The alignment information from the GDV device is relevant to the resonance frequency. According to Veerabrahmachar et al. (2023), the mid alignment (average nervous center alignment) is about 85.37 ± 7.18 for all the nervous centers.

The selected nervous center is then mapped onto the MBTI archetype and compared with the one identified in the personality test. While there is a lack of studies confirming the stability of the GDV parameters for personality measurement, a previous study demonstrates a clear relationship between personality and human organs. Al-Karaki et al.

(2024) conducted a study that shows that organ transplantation, especially heart transplantation, causes changes in the patient's personality and even memory. The bioenergy model is a solid foundation for personality measurement, given its connection to the nervous center system and human organs. (Cohen et al., 2017).

The Survival Hypothesis was formulated using the difference of means of each nervous center null hypothesis. This tests whether the sample means come from populations with means that are different from each other (Pitman, 1937). This assumes that energies from each nervous center represent the individual's personality. If the difference in the means of the percentages before and after death is insignificant, then the energies that represent the personality remain stable after death. The highest mean of the identified nervous center for the afterdeath dataset is compared to that before death. If the nervous centers before and after death are the same, this also provides evidence of personality survival. The null and alternative hypotheses are as follows:

Null Hypothesis: $\mu 1 - \mu 2 = 0$

Alternative Hypothesis: $\mu 1 - \mu 2 \neq 0$

Where $\mu 1$ is the mean of the percentage of the total energy of the nervous center before death, and $\mu 2$ is the mean of the percentage of the nervous center after death.

V. RESULTS

Table 1 map nervous centers to the MBTI personality types and Jungian cognitive functions (e.g., Ni, Te), using symbolic correspondences between nervous center qualities and personality traits. The seven nervous centers in ayurvedic tradition represent energy centers from the base of the spine to the crown of the head, each associated with different aspects of human experience (from survival to spirituality). Psychologists and spiritual thinkers have long drawn parallels between these nervous centers and personality or consciousness. Even Carl Jung explored Kundalini yoga and noted that the nervous centers "correspond by and large to the regions where consciousness was earlier localised", linking them to evolving psychological functions (Jung 2012).

Below is a structured mapping of each of the 7 nervous centers to one or more MBTI types and cognitive functions, along with the interpretive rationale. These associations are symbolic and drawn from thematic similarities (not a strict science or singular tradition), incorporating insights from existing psychological frameworks. Each nervous center's row highlights how its core qualities may resonate with certain personality patterns or functions in the MBTI system.

Table 1: Nervous center mapping to MBTI type indicators, Jungian cognitive functions, and Interpretative Rationale

Nervous center	MBTI personality types and Jungian cognitive functions (If nervous center balanced)	Interpretive Rationale
Muladhara (Base of spine; survival, grounding)	MBTI: ISTJ, ESTJ (stability, pragmatic types). Cognitive Functions: Introverted Sensing (Si) (stability, memory) also: Extraverted Thinking (Te) as a Supportive function	This nervous center represents our foundation – safety, structure, and survival instincts. This parallels Si's focus on preservation, routine and past experience to maintain stability. SJ types like ISTJ/ESTJ embody these grounding qualities, valuing tradition, responsibility, and concrete security (hence their strong Si-Te orientation). When this nervous center is balanced, a person is centered and secure; similarly, Si-dominant types establish security through reliability and common-sense grounding

Valverde et al., 2025

Svadhishthan (Lower abdomen: creativity, sexuality, emotion)

Manipura

abdomen:

power, will,

confidence)

(Upper

MBTI: ESFP, ISFP (sensual, creative freespirits) also ENFP (imaginative passion). Cognitive Functions: Introverted Feeling (Fi) (personal passion); **Extraverted Sensing** (Se) (sensory joy); symbolically also: Extraverted Intuition

(Ne) (creative ideation).

MBTI: ENTJ, ESTJ (determined. leadership- oriented types) Cognitive Functions: Extraverted Thinking

(Te) (willpower,

execution); also:

Introverted Intuition

(Ni) (vision in ENTJ).

Anahata MBTI: (Center of ENFJ, ESFJ (warm, altruistic facilitators); chest; love. compassion, also: INFP, ISFP empathy). (deeply compassionate

idealists).

Cognitive Functions: Extraverted Feeling (Fe) (interpersonal Introverted Feeling (Fi) (inner compassion)

compassion,

This nervous center governs emotional flow, pleasure, and creativity. This resonates with Fi's deep personal feeling and valuedriven passion - the "right to feel" authentically. Individuals like ESFP (Fi-Se) thrive on sensual experience and emotional expression, reflecting this energy through their spontaneity and joy of living. There is a strong creative impulse here; some interpretations liken this nervous center's vital creative force to Ne - an outpouring of possibilities and imaginative fertility. In essence, this nervous center's energy corresponds to those who live by heartfelt desire, creativity, and sensuous connection to life. The key issue governed by this energy is that of personal power. When this nervous center is energized, one has the quality of being assertive and dynamic. It represents confidence, wealth, prestige, optimism and success of the individual. It also represents self-esteem and power of wisdom. This nervous center symbolizes personal power, ambition, and self- discipline - our inner "fire" of will. This closely aligns with Te, the function that drives one to organize, decide, and manifest goals in the external world. A balanced Solar Plexus confers confidence, motivation and effective action, much like a Tedominant type (e.g. ENTJ) who naturally takes charge, strategizes, and turns visions into reality. Te users radiate purpose and drive, wielding authority and coordinating resources to fulfill their objectives. This nervous center's energy of assertive selfmastery is evident in those personality types that exhibit strong leadership, strategic focus, and empowered will. This nervous center represents unconditional love, empathy, and connection. These qualities correspond to the Feeling functions. Many associates Anahata with Fe, the function of harmonizing with others' emotions and expressing care openly. Fedominant types (ENFJ/ ESFJ) exemplify heart energy through their desire to unite people, foster goodwill, and emotionally support others. On the other hand, this nervous center can also be seen as the seat of personal compassion, aligning with Fi's deep inner empathy and valuedriven kindness. Fi-heavy idealists (INFP/ISFP) channel love in a quiet, profound way - guided by an internal moral compass. In either view, a balanced Anahata nervous center (like a healthy Feeling function) manifests as genuine

Vishuddhaor (Throat; communicatio n, expression, truth).

MBTI: ENFJ, ESFP (expressive, communicative types); also: ESTJ/ ENTJ (frank communicators).

Cognitive Functions: Extraverted Feeling (Fe) (expressive communication) ; alternatively: Extraverted Thinking (Te) (verbalizing logic). This nervous center governs speech, self-expression, and truthtelling. It is the energetic center that lets thoughts and feelings be shared with the world. This resonates strongly with Fe as a communication-oriented function using one's voice to connect, empathize, and convey authenticity. An Fe-driven communicator (for instance, an ENFJ) will speak from the heart, facilitate understanding, and often serve as a voice for group values, much as a balanced Vishuddha nervous center enables one to speak clearly and honestly. Additionally, the Throat nervous center bridges intellect and emotion; thus it can be linked it to Te - the assertive articulation of ideas and truths. In any case, this nervous center's healthy state is seen in those who communicate with clarity, creativity, and integrity, embodying the motto "speak your truth" - whether that truth is emotional (Fe) or factual (Te).

Aina

MBTI: INFJ, INTJ (visionary, introspective types); also: ENFP/ ENTP (imaginative intuitives). Cognitive functions: Introverted Intuition (Ni) (inner insight, foresight); also: Extraverted Intuition (Ne) (imagination).

Sahasrara (Top of head; spirituality, unity, pure consciousness INTP (philosophical, truthseeking type); INFJ (spiritually attuned type) Cognitive functions: Introverted Thinking (Ti) (abstract understanding); or Transcendent Function (integration of all)

This nervous center is associated with intuition, imagination, and higher perception - essentially our "sixth sense." This maps onto Ni, the function of

deep internal insight and foresight. Ni-dominant types (like INFJ, INTJ) personify Ajna's energy with their natural inclination toward visionary thinking, pattern-seeking, and profound introspection. They trust unconscious hunches and "see" meanings beneath the surface. This nervous center represents pure awareness, spiritual connection, and transcendence of the ego. In many frameworks it stands apart - the realm of universal self rather than personality. It can be aligned with Ti, the most abstract, impersonal intellect that pushes beyond personal biases toward universal truths. In this view, a type like INTP (dominant Ti) embodies the Sahasrara's quest for ultimate understanding - a mind "reaching beyond personal limitations into the vastness of the universe". However, it can also signify

oneness and the dissolution of the individual self. In the MBTI mapping, this energy is best seen as the integration or transcendence of all functions - a harmony where intuition, thinking, sensing, and feeling unite. When this energy is balanced, one experiences enlightenment, wisdom, and a sense of unity with a greater whole - a goal that lies outside any one

personality type yet beckons the fully realised self.

Table 2 illustrates the energy measurements in joules for each nervous center before death for the research participant. These measures were taken between August 8 and August 29, 2024. The times that these measures were taken are also shown. The total energy is the sum of all the nervous centers' energies and is used to calculate the percentages of

that total represented by each nervous center energy.

Table 2 Energy in micro joules for the nervous centers of the before death

Date and	Mul	Svad	Man		Vish			
Time	adha	histh	ipur	Ana	udd		Saha	Total
-	ra	ana	a	hata	ha	Ajna	srara	Energy
08. 04:29:00	6.29	5.52	5.82	6.35	4.20	4.19	5.00	37.37
08. 21:01:00	5.87	5.28	5.66	5.87	4.53	5.02	5.30	37.53
10.06:04:00	4.99	5.64	5.22	5.52	4.13	3.86	4.57	33.93
10. 21:55:00	3.93	4.08	3.82	4.16	3.43	2.38	3.51	25.31
12. 04:41:00	3.95	3.81	3.68	3.97	3.38	2.63	3.38	24.80
13. 02:57:00	5.01	4.80	4.11	5.37	4.69	3.17	4.14	31.29
13. 20:03:00	5.63	5.25	4.94	5.68	4.98	3.20	4.54	34.22
17. 06:14:00	4.34	4.79	4.64	4.59	3.99	2.85	4.30	29.50
20. 01:10:00	5.79	5.39	5.42	5.75	4.85	3.41	5.03	35.64
21. 23:03:00	5.05	5.06	4.94	5.74	4.52	3.44	4.74	33.49
25. 05:31:00	5.35	4.40	5.08	5.40	4.20	3.44	4.06	31.93
26. 00:59:00	5.68	4.86	5.18	5.63	4.74	3.70	4.70	34.49
28. 06:14:00	5.58	4.67	5.24	5.45	4.51	3.71	4.30	33.46
29. 05:15:00	5.13	4.57	4.78	5.34	4.26	3.76	4.47	32.31

Table 3 shows the energy measurements in joules for each nervous center after death. These measurements were taken on August 31, 2024, the day of death for the participant. The time of death was around 15:00

Table 3 Energy in micro joules for the nervous centers of the after-death dataset

Date and Time	Mul adh ara	Svadhi sthana	Mani pura	Anah ata	Vishud dha	Ajna	Sahas rara	Total Ener gy
31. 15:33:00 31.	3.97	5.74	4.83	4.46	4.85	4.91	4.88	33.64
17:24:00 31.	6.64	5.87	6.79	7.00	5.64	5.19	5.40	42.53
19:38:00	4.98	5.68	5.57	6.18	4.89	4.30	4.90	36.50

Figure 1 depicts the energy levels for each nervous center before and after death. The red arrow indicates the time of death. Figure 2 shows the total energy levels for all nervous centers captured by the GDV device before and after death. The red arrow indicates the time of death.

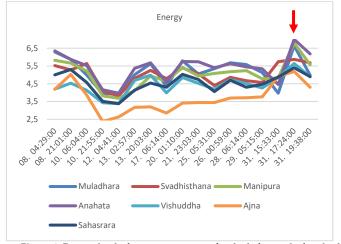


Figure 1 Energy levels for nervous centers for the before and after death datasets

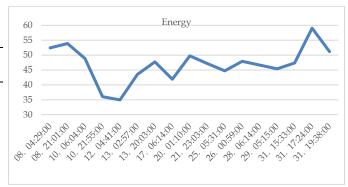


Figure 2 Total energy levels before and after death for all the nervous centers Table 4 shows the standard deviations and means for the percentages of the total energy for each nervous center before and after death. Table 4 shows that the nervous center is predominant. Table 2 shows the energy measurements in joules for each nervous center before death. These measurements were taken between August 8 and August 29, 2024. The times these measurements were taken are also displayed in the same table. The total energy is the sum of all the nervous centers' energy and is used to calculate the percentages of that total represented by each nervous center energy.

Table 4 Standard and mean for percentage of the total energy for before and

STD Mean							Sahas rara
for data	Mulad	Svad histh	Manipu	Ana	Vishud		
sets	hara	ana	ra	hata	dha	Ajna	
STD							
Before	0.01	0.01	0.01	0.01	0.01	0.01	0.01
STD							
After	0.02	0.02	0.01	0.02	0.01	0.02	0.01
Mean							
Before							
(%)	15.94	14.96	15.05	16.43	13.26	10.71	13.62
Mean							
After							
(%)	13.84	15.35	15.25	15.65	13.65	12.78	13.47

after death dataset

The participant's MBTI test revealed an extroverted, intuitive, feeling, and judging (ENFJ) archetype. The MBTI personality traits identified for this archetype match the Ahanata nervous center (Table 1) and are outlined in Table 5. These are the predominant personality traits of the participant.

Table 5 Personality traits from MBT Extroverted, intuitive, feeling, judging archetype mapped to the Anahata nervous center in Table 1.

nergye mapped to the intimuta heroous center in Tuote 1.	
Personality traits	
Genuinely and warmly interested in people	

Value people's feelings Get personal satisfaction from helping others

Extremely sensitive to criticism and discord

Warmly affectionate and affirming

Driven to meet other's needs

Table 6 shows the alignment of the Anahata nervous center during the experiment. The average is 85.35, which satisfies the requirement for alignment.

Table 6: Alignment of the Anahata nervous center

Date	and time	Alignment	
08. 0	4:29:00	94	
08. 2	1:01:00	93	
10. 0	6:04:00	81	
10. 2	1:55:00	84	
12. 0	4:41:00	79	
13. 0	2:57:00	94	
13. 2	0:03:00	81	
17. 0	6:14:00	69	
20. 0	1:10:00	95	
21. 2	3:03:00	95	
25. 0	5:31:00	81	
13. 0 13. 2 17. 0 20. 0 21. 2	2:57:00 0:03:00 6:14:00 1:10:00 3:03:00	94 81 69 95 95	

26. 00:59:00	68
28. 06:14:00	95
29. 05:15:00	68
31. 15:33:00	95
31. 17:24:00	95
31. 19:38:00	84
Average	85.3529412

Table 7 shows the results of the hypothesis testing for the difference of the means (depicted in Table 4) at different alpha levels. The hypothesis is accepted if both means are not significantly different and the average energies before and after death remain the same.

Table 7: Hypothesis testing for the null hypothesis for each nervous center at alphas 0.025 and 0.05

nervous center	P value	Null hypothesis Alpha = 0.025	Null hypothesis Alpha = 0.05
Muladhara	0.0132	Reject	Reject
Svadhisthana	0.6210	Accept	Accept
Manipura	0.7228	Accept	Accept
Anahata	0.3165	Accept	Accept
Vishuddha	0.5491	Accept	Accept
Ajna	0.0149	Reject	Reject
Sahasrara	0.8168	Accept	Accept

VI. DISCUSSIONS AND CONCLUSIONS

As Figure 1 shows, there is a high variation in the total energy level of the nervous centers during the measurement period, with a significant increase on the last day. These variations and the total energy levels are depicted in Figure 2. Despite changes, the averages of the energy percentages remain quite similar for the five nervous centers except for the Ajna, which is higher after death, and for the Muladhara, which is lower after death, as depicted in Table 4.

The results of the hypothesis testing for the difference in means in Table 4 at different alpha levels suggest that at alpha levels of 2.5% and 5%, the Muladhara and Ajna energies appear to be significantly different.

Our interpretation of these results is that coherent biophotons act as optical carriers for holographic read/write operations between the brain and the quantum field of consciousness (Valverde, Korotkov, & Swanson, 2022). This is supported by the sudden energy increase in the Ajna nervous centers, according to Table 4, after death. The Ajna energy relates to levels of understanding and intuition; the increase of this energy after death suggests that the individual becomes more conscious, and the level of understanding increases after this event.

These results are highly consistent with the EEG studies of Shaw (2024) that document 30- to 90-second bursts of gamma synchrony after cardiac arrest precisely when patients later report panoramic life-review visions. The increase of energy in the Ajna nervous center after death can be explained with the Penrose-Hameroff Orch OR model (Hameroff & Chopra, 2011) with the concept of microtubule quantum coherence, suggesting the brain briefly "broadcasts" its data to the vacuum or quantum consciousness unified field, generating a higher level of consciousness. The Muladhara, as Table 1 suggests, relates to energy sources; its drop in energy can be explained by the death of the physical body, as the energy coming from the body is no longer present.

The Anahata nervous center has the highest percentage of energy related to the total energy before and after death. This energy is considered aligned based on the results of Table 6 and correlates to the MBTI archetype found in the personality test given to the participant before the experiment. The matching personality traits are depicted in Table 5. The exercise confirmed that predominant energy correlates to the personality test and that these energies represent the participant's personality, supporting the hypothesis of personality survival.

The results of this research were produced from a single case study. This limitation, therefore, compromises the generalisability of the conclusions. Many critics question the academic value of the case study method, arguing that the findings or results cannot be generalised. It is understood that the larger the sample size, the more confident we can

be that the estimate reflects the population. Therefore, more participants are needed to confirm the above conclusions (Valverde et al., 2011).

The p-value is the difference between the sample means is at least as large as what has been observed, assuming that the population means are equal. The smaller the p-value, the stronger the evidence that the two populations have different means. Table 7 shows that the p-values for Muladhara and Ajna are very small compared to the other p-values. This indicates a significant drop in energy from physical sources, but the highest level of awareness after death. The research presented here employs a novel approach to survival research by using the energies proposed by the bioenergy model instead of the traditional approach of using EEGs to analyse brainwaves. The bioenergy model asserts that non-local consciousness is connected to the body through bioenergy fields that can be measured in the physical body using GDV technology. When the body dies, these bioenergy fields remain connected to the body for an unknown period. In a 2014 experiment with GDV technology on people who had died, time-dependent curves of evoked bioelectrography parameters were collected for three to six days after death. The observed energy levels decreased over time. This supports the hypothesis that non-local consciousness remains linked to the physical body several days after death. While the implications of the results are limited to using a single participant, the objective of the research is to propose a new framework for understanding human consciousness.

VII. CONFLICT OF INTEREST

There are no conflicts of interest in this article.

VIII. DATA AVAILABILITY STATEMENT

Data are available upon request.

REFERENCES

Al-Karaki, J., Khan, M. A. Z., Rathebe, P., Valverde, R., Sepehri, A., & Fioranelli, M. (2024). Retrieving the information stored in the donated organ may cause the patient's personality to change after the transplant operation. *Italian Journal of Medicine*, 18(4), 1790-1795 https://doi.org/10.4081/itjm.2024.1790

Barsotti, T. J., Jain, S., Guarneri, M., King, R. P., Vicario, D., & Mills, P. J. (2023). An exploratory investigation of human biofield responses to encountering a sacred object. *Explore*, 19(5), 689-694. https://doi.org/10.1016/j.explore.2023.01.007

Beshara, R. (2013). The chakra system as a bio-socio-psycho-spiritual model of consciousness: Anahata: As heart-centered consciousness. *Journal of Applied Consciousness Studies*, 1(1), 29-33. https://doi.org/10.4103/2347-5633.123289

Briggs Myers, I., McCaulley, M. H., Quenk, N. L., & Hammer, A. L. (1998). *Manual: A guide to the development and use of the Myers-Briggs Type Indicator.* Palo Alto, CA: Consulting Psychologist Press.

Bundzen, P., Korotkov, K., & Unestal, L. E. (2004). Psycho-dynamic and bio-energetic results of integrated mental training. In K. Korotkov (ed.). *Measuring Energy Fields: Current Research* (pp. 12-23), USA: Backbone Publishing Co,

Chase, C. R. (2018). The geometry of emotions: Using chakra acupuncture and 5-Phase Theory to describe personality archetypes for clinical use. *Medical acupuncture*, 30(4), 167-178. https://doi.org/10.1089/acu.2018.1288

Cohen, L., Manion, L., & Morrison, K. (2017). Validity and reliability. In *Research methods in education* (pp. 245-284). London: Routledge.

 Costa, P.T. Jr & McCrae R.R. (1992) NEO PI-R Professional Manual: Revised NEO PI-R and NEO-FFI, Psychological Assessment Resources
Dobson, P., & O'Keeffe, E. (2010, January). Measuring Human Personality by Machine: Could It Be True. In Annual Division of Occupational Psychology Conference, British Psychological Society, Brighton, UK.

Dwivedi, M. K. (2018). Role of chakras in developing the personality of leaders. *Acta Scientific Medical Sciences*, 2(8), 105-107.

- Hacker, G. W., Pawlak, E., Pauser, G., Tichy, G., Jell, H., Posch, G. & Hutter, J. (2005). Biomedical evidence of influence of geopathic zones on the human body: scientifically traceable effects and ways of harmonization. Forschende Komplementärmedizin/Research in Complementary Medicine, 12(6), 315-327. https://doi.org/10.1159/000088624
- Hameroff, S., & Chopra, D. (2011). The "quantum soul": A scientific hypothesis. In Moreira-Almeida, A., Santana Santos, F. (eds) Exploring frontiers of the mind-brain relationship (pp. 79-93). New York: Springer.
- Jain, D., & Kumar, A. (2024). AI unveiled personalities: Profiling optimistic and pessimistic attitudes in Hindi dataset using transformer-based models. *Expert Systems*, 42(1), 315-327. https://doi.org/10.1111/exsy.13572
- Jung, C. G. (2012). The psychology of Kundalini yoga: Notes of the seminar given in 1932. Princeton University Press.
- Jung, C. G. (1971). Collected works of C. G. Jung: Vol. 6. In *Psychological types* (H. G. Baynes, trans., revised by R. F. C. Hull. Princeton, NJ: Princeton University Press. (Original work published 1921)
- Korotkov K. G. (2004) *Measuring Energy Fields*, Backbone Publishing Company, Fair Lawn, NJ, USA.
- Korotkov, K. (2014). Experimental research of human body activity after death. St Petersburg Federal University SPITMO (St Petersburg, Russia).
- Korotkov, K. G., & Korotkin, D. A. (2001). Concentration dependence of gas discharge around drops of inorganic electrolytes. *Journal of Applied Physics*, 89(9), 4732-4736. https://doi.org/10.1063/1.1360700
- Kostyuk, N., Cole, P., Meghanathan, N., Isokpehi, R. D., & Cohly, H. H. (2011). Gas discharge visualization: an imaging and modeling tool for medical biometrics. *International journal of biomedical imaging*, 2011(1), 1-7. https://doi.org/10.1155/2011/196460
- Kostyuk, N., Meghanathan, N., Isokpehi, R. D., Bell, T., Rajnarayanan, R., Mahecha, O., & Cohly, H. (2010). Biometric evaluation of anxiety in learning English as a second language. *International Journal of Computer Science and Network Security*, 10(1), 220-229.
- Levin, J., & Mead, L. (2008). Bioenergy healing: a theoretical model and case series. *Explore*, 4(3), 201-209. https://doi.org/10.1016/j.explore.2008.02.005
- Nevoit, G., Filiunova, O., Potyazhenko, M., Minser, O., Bumblyte, I. A., & Vainoras, A. (2023). Modern biophysical view of electromagnetic processes of the phenomenon of life of living biological systems as a promising basis for the development of complex medicine: towards the concept of Bioelectronic Medicine. *Journal of Complexity in Health Sciences*, 6(2), 49-66. https://doi.org/10.21595/chs.2023.23867
- Pitman, E. J. (1937). Significance tests which may be applied to samples from any populations. *Supplement to the Journal of the Royal Statistical Society*, 4(1), 119-130. https://doi.org/10.2307/2332008
- Rastogi, R., Saxena, M., Chaturvedi, D. K., Gupta, M., Gupta, N., Agrawal, U., Srivastava Y. & Gau, V. (2021). Measurement of human bioelectricity and pranic energy of different organs: A sensor and CPS-based approach. In Manocha, A.K., Jain, S., Singh, M., Paul, S. (eds.). Computational Intelligence in Healthcare (pp. 1-33). Cham: Springer International Publishing.
- Shaw N. A. (2024). The gamma-band activity model of the near-death experience: a critique and a reinterpretation. *F1000Research*, *13*, 674. https://doi.org/10.12688/f1000research.151422.1
- Stake, R. (1995). Case study research. Cham: Springer.
- Sweta, K. M., Awasthi, H. H., Godbole, A., & Prajapati, S. (2017). Physioanatomical resemblance of inferior hypogastric plexus with Muladhara Chakra: a cadaveric study. AYU (An International Quarterly Journal of Research in Ayurveda), 38(1-2), 7-9. https://doi.org/10.4103/ayu.AYU_140_17
- Valverde, R. (2019). Quantum Consciousness & Spirit. Scientific God Journal, 10(3), 167-181.
- Valverde, R., & Korotkov, K. (2025). Gas discharge visualisation technology for psychological research applications: A systematic review. *International Journal of Studies in Psychology*, 5(2), 67-75. https://doi.org/10.38140/ijspsy.v5i2.1938

- Valverde, R., & Swanson, C. (2020). The Unintelligibility Approach to Near Death Research. *Journal of Consciousness Exploration & Research*, 11(3), 300-310.
- Valverde, R., & Swanson, C. (2021). Development of a Quantum-based Ontology for Describing NDE by Using Computerized Natural Language Processing. Journal of Consciousness Exploration & Research, 12(3),271-277
- Valverde, R., & Swanson, C. (2022). The Development of a Quantum-based Ontology for the Description of the Reality Experienced in NDEs by Using Computerized NLP Analytics. NeuroQuantology, 20(2), 10-22. https://doi.org/10.14704/10.14704/nq.2022.20.2.NQ22019
- Valverde, R., Korotkov, K., & Swanson, C. (2022). The Quantum Hologram Theory of Consciousness as a Framework for Altered States of Consciousness Research. *NeuroQuantology*, 20(3), 187-197. https://doi.org/10.14704/nq.2022.20.3.NQ22059
- Valverde, R., Korotkov, K., & Swanson, C. (2023). Measuring Altered States of Consciousness in Transpersonal Psychotherapy with Gas Discharge Visualization Technology: A Systematic Review. *Journal of Consciousness Exploration & Research*, 14(6), 479-504
- Valverde, R., Swanson, C., Sepehri, A., & Fioranelli, M. (2024). Quantum Intelligence in Penrose's Space-Time Geometry and Its Relation to Non-Human Intelligence Contacts and Human Immortality: An Alternative to the Orch-OR Model. The International Journal of Multiphysics, 18(3), 1213-1219.
- Valverde, R., Toleman, M., & Cater-Steel, A. (2011). A method for comparing traditional and component-based models in information systems re-engineering. *Information Systems and e-Business Management*, 9, 89-107. https://doi.org/10.1007/s10257-010-0139-z
- Veerabrahmachar, R., Bista, S., Bokde, R., Jasti, N., Bhargav, H., & Bista, S. (2023). Immediate Effect of Nada Yoga Meditation on Energy Levels and Alignment of Seven Chakras as Assessed by Electrophotonic Imaging: A Randomized Controlled Crossover Pilot Study. Adv Mind Body Med, 37(1), 11-16.
- Wholey, J. S. (2015). Exploratory evaluation. In: Newcomer K, Hatry HP, Wholey JS, (Eds.). *Handbook of practical program evaluation* (pp. 88-107), USA
- **Disclaimer/Publisher's** Note: The views, statements, opinions, and data expressed in all publications are solely those of the individual author (s) and contributor (s) and do not necessarily reflect those of GAERPSY or the editor (s). GAERPSY and the editor (s) assume no responsibility for any injury to persons or property arising from using any methods, instructions, products, or ideas in the published content.